DGA 2500
Diagnostic Gas Analyser

Operator’s Manual
DISCLAIMER OF WARRANTIES AND LIMITATIONS OF LIABILITIES

Whilst the authors have taken due care in the preparation of this manual, nothing contained herein:

- modifies or alters in any way the standard terms and conditions of the purchase, lease or rental agreement under the terms of which the equipment to which this manual relates was acquired,
- increases in any way the liability to the customer or to third parties.

TO THE READER

Whilst every effort has been made to ensure that the information contained in this manual is correct, complete and up-to date, the right to change any part of this document at any time without prior notice is reserved.

⚠️ Before installing, maintaining or operating this unit, please read this manual carefully, paying extra attention to the safety warnings and precautions.

Copyright 2002 Snap-on UK Holdings Ltd
All Rights Reserved

Sun Electric Europe B.V.
Spaklerweg 69
1099 BB Amsterdam
The Netherlands
Tel: +31.20.5682.622
Fax: +31.20.6947.962
Web-site:
http://www.Sun-diagnostics.com
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>1</td>
</tr>
<tr>
<td>Notes on User Documentation</td>
<td>5</td>
</tr>
<tr>
<td>1 Safety</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Safety Notice</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1 Read all Instructions</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Conventions</td>
<td>8</td>
</tr>
<tr>
<td>2 Product Specification</td>
<td>9</td>
</tr>
<tr>
<td>2.1 General</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Gas Bench</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Propane Equivilance Factor</td>
<td>10</td>
</tr>
<tr>
<td>3 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>3.1 The DGA 2500</td>
<td>11</td>
</tr>
<tr>
<td>3.2 Maintenance</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Options</td>
<td>13</td>
</tr>
<tr>
<td>4 Functional Description</td>
<td>15</td>
</tr>
<tr>
<td>4.1 Platform Layout</td>
<td>15</td>
</tr>
<tr>
<td>4.2 Gas Module Layout</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Common Program Elements</td>
<td>17</td>
</tr>
<tr>
<td>4.4 Gas Analyser Icons</td>
<td>17</td>
</tr>
<tr>
<td>5 System and Gas Analyser General Screens</td>
<td>21</td>
</tr>
<tr>
<td>5.1 Gas Analyser Menu</td>
<td>22</td>
</tr>
<tr>
<td>5.2 The Gas Analyser System Menu</td>
<td>24</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

5.3 Gas Analyser Maintenance Menu ... 25
5.4 Gas Analyser System Settings ... 26
5.5 Gas Analyser System Information ... 28
5.6 Print ... 29

6 Preparatory Steps ... 31
6.1 Connections ... 31
 6.1.1 Power Connections ... 31
 6.1.2 Data Connections .. 31
 6.1.3 Gas Module Pneumatic Connections 32
6.2 Start-Up ... 32
 6.2.1 Power Up .. 32
 6.2.2 Gas Analyser Start-up ... 33
 6.2.3 Warm up .. 33
 6.2.4 Zero-calibration .. 34
6.3 Daily Leak Check ... 35
6.4 HC Residue Check .. 36
6.5 Settings ... 37
 6.5.1 Fuel Type Selection .. 37
 6.5.2 Speed Factor Setting .. 37
 6.5.3 Lambda/AFR Selection ... 37
6.6 Vehicle Connections ... 38
 6.6.1 RPM Pick-Up ... 38
 6.6.2 Oil Temperature Probe ... 38

7 Operation — General .. 39
7.1 Testing Tips ... 39
7.2 Measurement Procedure ... 40
7.3 Shut Down Procedure .. 41

8 Operation – The Free Measurement Procedure 43
8.1 The Free Measurement Screen ... 44
8.2 Free Measurement Vehicle Setup ... 46
8.3 Saving and Loading Vehicle Setups 48
8.4 Editing Limit Sets ... 49
8.5 Free Measurement Test Procedure 50
8.6 Storing Data in the Data Buffers .. 51
8.7 The Print Preview Window .. 54
8.8 Printing Test Results ... 55

9 Operation – The SUN EEC Test Procedure 57
9.1 Introduction .. 57
9.2 SUN EEC Test Vehicle Set-up 58
9.3 Editing Limit Sets ... 61
9.4 Saving and Loading Vehicle Set-ups 62
9.5 Test Procedure Summary 64
9.6 Initialization Phase ... 65
9.7 Fast Idle Preconditioning Phase 66
9.8 Fast Idle Measurement Phase 70
9.9 Normal Idle Preconditioning Phase 72
9.10 Normal Idle Measurement Phase 74
9.11 Results Phase ... 78

10 Maintenance ... 81
10.1 System Checks .. 81
10.2 Leak Check (Vacuum) 81
10.3 Leak Check (Gas) .. 84
10.4 Gas Calibration Check 87
10.5 Check and/or Install the O2 Cell 88
10.6 Routine Maintenance Procedures 92
10.6.1 Periodic Checks ... 92
10.6.2 Filters .. 92
10.6.3 Sample Probe and Hose 93
10.6.4 Test Leads .. 94
10.6.5 O2 Cell .. 94
10.6.6 NO Cell (Optional) 94
10.6.7 General .. 95
10.7 Error, Warning and System Status Messages 95
10.7.1 Automatic Pop-up Windows 95
10.8 The Error/Warning Button 97
10.9 Maintenance Parts .. 100

Index ... 101
Notes on User Documentation

The DGA 2500 user documentation contains instructions for the safe operation and efficient use of the unit.

This important information is designed for the prevention of injury to the operator and/or other persons and for the avoidance of damage to the unit or vehicles connected thereto.

The user documentation comprises:

- The SUN® Diagnostic Platform Operator’s manual containing an introduction to the SUN® Diagnostic Platform system together with safety and operating instructions that are common to all system modules.
- The DGA 2500 Operator’s Manual describing the DGA 2500 module in detail and providing instructions for carrying out complete Free Measurement and SUN ECC vehicle test procedures.
- The appropriate Operator’s Manual or Manuals relating to any jurisdiction specific test programs (e.g. MOT, AU etc.) that may be installed.

Whilst no documentation is supplied in printed form, this documentation is included on the CD-ROM and will be installed on the unit PC during the installation of the software.

To access the documentation:

- press F1 on the keyboard or the F1 or help button on the remote control.

or

- Click the “Help” button in the program toolbar.
1 Safety

All Safety Precautions relevant to the unit are described in the Safety Precautions book, part number: EAZ0007E04A

Figure 1-1 part number: EAZ0007E04A

The Safety Precautions book should be fully understood by every operator. We suggest that (a copy of) of the Safety Precautions book be stored near the unit, in sight of the operator.

The Operator’s Manual will contain specific warnings and cautions when possible dangerous situations may be encountered during the described procedures.

1.1 Safety Notice

Read this manual thoroughly before operating the unit.

The unit is intended for use by properly trained, skilled professional automotive technicians. The safety messages presented in the Safety Precautions book and throughout this manual are reminders to the operator to exercise extreme care when using this unit.

There are many variations in procedures, techniques, tools, and parts for servicing vehicles, as well as in the skill of the individual doing the work. Because of the vast number of test applications and variations in the
products that can be tested with this instrument, we cannot possibly anticipate or provide advice or safety messages to cover every situation. It is the automotive technician’s responsibility to be knowledgeable of the system being tested. It is essential to use proper service methods and test procedures and to perform tests in an appropriate and acceptable manner that does not endanger your safety, the safety of others in the work area, or vehicle or equipment being tested.

It is assumed the operator has a thorough understanding of vehicle systems before using the unit. Understanding of these system principles and operating theories is necessary for competent, safe and accurate use of this unit.

Before using the unit, always refer to and follow safety messages and applicable test procedures provided by the manufacturer of the vehicle or equipment being tested.

Warning:

Use equipment only as described in the manual.

1.1.1 Read all Instructions

Read, understand and follow all safety messages and instructions in the Safety Precautions book, this manual and on the unit.

1.2 Conventions

This manual contains text styles that ask you to pay extra attention:

- **Note:**

 Suggestion or explanation.

- **Caution:**

 Stresses that the following action may cause damage to the unit or objects attached to it.

- **Warning:**

 Stresses that the following action may cause (severe) injury to the operator or others.

- **Warning:**

 The operator must have full knowledge of all information stated in the Operator’s Manual.
2 Product Specification

2.1 General

2.2 Gas Bench

Table 2-1 Operation & Storage

<table>
<thead>
<tr>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. ambient temp.</td>
</tr>
<tr>
<td>Min. ambient temp.</td>
</tr>
<tr>
<td>Rel. humidity</td>
</tr>
<tr>
<td>Max atmospheric pressure variation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Storage Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Rel. humidity</td>
</tr>
</tbody>
</table>

Table 2-2 Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range/Resolution</th>
<th>Accuracy: Relative/Absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td>%vol CO:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000 – 9.999</td>
<td>±5%/±0.03*</td>
</tr>
<tr>
<td></td>
<td>10.00 – 14.00</td>
<td></td>
</tr>
<tr>
<td>%vol CO₂:</td>
<td>0.00 – 18.00</td>
<td>±5%/±0.5%*</td>
</tr>
</tbody>
</table>
Table 2-2 Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range/Resolution</th>
<th>Accuracy: Relative/Absolute</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppmvol HC:</td>
<td>0 – 2000</td>
<td>±5%/10ppm*</td>
</tr>
<tr>
<td></td>
<td>2000 – 5000</td>
<td>±5%/10ppm</td>
</tr>
<tr>
<td></td>
<td>5000 – 9000</td>
<td>±10%</td>
</tr>
<tr>
<td>%vol O₂:</td>
<td>0 – 25.00</td>
<td>±5%/±0.1*</td>
</tr>
<tr>
<td>ppmvol NO (option):</td>
<td>0 – 5000</td>
<td>±5%/25ppm (at room temperature)</td>
</tr>
<tr>
<td>rpm</td>
<td>0 – 9999</td>
<td>±1.0%</td>
</tr>
<tr>
<td>°C:</td>
<td>0 – 120</td>
<td></td>
</tr>
<tr>
<td>°F:</td>
<td>14 – 302</td>
<td></td>
</tr>
</tbody>
</table>

Note:
*accuracy according to OIML Class 0

2.2.1 Propane Equivilance Factor

The P.E.F. value is 0.530.
3 Introduction

3.1 The DGA 2500

The SUN® DGA 2500 is a versatile, high-performance PC-based test instrument for the analysis of motor vehicle exhaust gases. The unit is designed to meet the performance requirements of OIML Class 1 and 0 and ISO 3930.

The basic configuration of the unit comprises:

- A gas analysis module containing a Siemens “Sibench” gas bench.
- A rpm/oil temperature module (ROTI) for the measurement of engine speed and oil temperature. The unit is supplied with a Grey inductive pick-up (P/N EAX0048E03A; for use with conventional HT ignition systems) as standard equipment.
- An exhaust probe and hose assembly, used for the collection of the gas sample from the vehicle tailpipe.

The DGA 2500 forms part of the SUN® Diagnostic Platform System. Refer to the SUN® Diagnostic Platform Operator’s Manual (2: ‘The SUN Diagnostic Platform’) for an introduction to the system as a whole.

The addition of an optional USB to 4 x RS232 connector enables a smoke module, for testing diesel emissions, and a Portable Data Link, used to obtain information from the vehicle engine management system, to be connected to the system via the Gas Analyser. This connector can also be used for external communication with, for example, the customer’s central computer system.

Specific software versions will be available for performing the emissions tests specified by separate national or international jurisdictions. Although this jurisdiction specific software may alter the DGA 2500 standard software described herein, this manual is also applicable to these specific programs when used in conjunction with the specific documentation relating to such programs.
With the standard software the unit is capable of measuring the concentrations of up to five gases in vehicle exhaust emissions:

- Carbon Monoxide, Carbon Dioxide and Hydrocarbons (CO, CO$_2$ and HC) by infra red absorption.
- Oxygen (O$_2$) by an operator changeable electrochemical cell.
- Oxides of Nitrogen (NO) by electrochemical cell. The NO cell is optional and is NOT operator changeable.

In addition to the gas measurements the unit also displays:

- Lambda (λ) according to Brettschneider.
- Engine speed (rpm) via the ROTI module. An inductive rpm pick-up, to be placed on a secondary ignition cable, is supplied as standard equipment. A capacitive pick-up, for use on a primary or injector wire, and a primary ECU/RPM adapter, for connection to a square wave from the engine management system, are available as options, thus making the analyser suitable for conventional, wasted spark and direct ignition systems.
- Oil temperature via the ROTI module by means of an oil temperature probe substituted for the oil dipstick.

Note:

In cases where a Portable Data Link is connected to the analyser, rpm and oil temperature data will be obtained via the PDL.

CO corrigé (CO$_c$) may be displayed using a formula corrected for fuel type.

3.2 Maintenance

Details of the maintenance operations that should be carried out by the operator are included in this manual together with a list of operator service messages and a list of maintenance parts.

All maintenance operations, other than those specifically described in this manual, must be carried out by trained service personnel authorised by the manufacturer.

In particular, full gas calibrations must only be performed by a qualified representative of the manufacturer.
3.3 Options

The optional parts are available for the DGA 2500 are shown by the table.

Table 3-1 Options

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAK0245E01A</td>
<td>Serial Interface Board Kit</td>
</tr>
<tr>
<td>EAK0245E02A</td>
<td>NO Sensor Kit</td>
</tr>
<tr>
<td>EAK0245E04A</td>
<td>PRIM/ECU rpm adaptor Kit</td>
</tr>
<tr>
<td>EAX0048E06A</td>
<td>Capacitive rpm Pick-up Kit</td>
</tr>
<tr>
<td>7009E9322-69</td>
<td>Exhaust Probe Kit (High Temperature)</td>
</tr>
</tbody>
</table>
4 Functional Description

4.1 Platform Layout

4.2 Gas Module Layout

Figure 4-1 The Gas Module - Rear Panel

1. 3 x USB connections (used for connection to ROTI module, Infrared receiver etc)
2. USB connection for PC interface
3. 4 x RS232 connections (used for connection to Smoke Module, Portable Data Link etc)
4. DC power output (for use with future options)
5. Clean air inlet (with charcoal filter (p/n 7096E9061-99) to filter incoming air)
6. Primary filter (p/n 7096E9062-98)
7. Calibration gas inlet (used for the supply of calibration gas to the unit)
8. Gas Filter (white, p/n 7096E9061-03)
9. Gas sample inlet (connection point for exhaust probe/sample hose assembly)
10. Water filter (blue, IDN-8G, p/n 7096E9061-02)
11. NO sensor (Behind cover plate; optional; p/n 7096E4060-20).
12. O2 Sensor (behind cover plate; p/n 7096E4060-31)
13. 115/230 V~ in (115/230 V~ from cabinet power distribution system)
14. Voltage selector switch (selects 115 V~ or 230 V~)
15. 115/230 V~ out (may be used as power supply for optional or other equipment)
16. NO outlet (gas sample outlet from NO sensor)
17. Water outlet (connect a tube to this outlet to drain water from the water removal system)
18. Gas sample outlet (outlet for gas sample from gas bench)
4.3 Common Program Elements

For details of program elements that are common across the SUN® Diagnostic Platform system, refer to the following sections of the Diagnostic Platform Operator’s Manual:

- For details of screen elements, refer to the Diagnostic Platform Manual 4.2: ‘Screen Elements’.
- For details of buttons together with an illustrated guide to icons used in common by all system modules, refer to the Diagnostic Platform Manual 4.3: ‘Buttons’.
- For details of the use of drop-down menus, refer to the Diagnostic Platform Manual 4.4: ‘Drop-down Menus’.

4.4 Gas Analyser Icons

The toolbar and menu icons shown in the tables are specific to the Gas Analyser.

Table 4-1 Gas Analyser Toolbar Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas Analyser</td>
<td>Use this button to return to the Gas Analyser Main Menu.</td>
</tr>
<tr>
<td></td>
<td>Vehicle Setup</td>
<td>Use this button to access the vehicle setup screens (see 8.2: ‘Free Measurement Vehicle Setup’ and 9.2: ‘SUN EEC Test Vehicle Set-up’).</td>
</tr>
<tr>
<td></td>
<td>Print Preview</td>
<td>Use this button to preview the data to be printed.</td>
</tr>
</tbody>
</table>
Table 4-1 Gas Analyser Toolbar Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Standby]</td>
<td>Standby</td>
<td>Use this button to place the unit in standby mode.</td>
</tr>
<tr>
<td>![Zero-calibration]</td>
<td>Zero-calibration</td>
<td>Use this button to manually initiate a zero-calibration (see 6.2: ‘Start-Up’).</td>
</tr>
<tr>
<td>![Toggle Limits 1]</td>
<td>Toggle Limits 1</td>
<td>Indicates that limit set 1 is currently applied; click to toggle to limit set 2; (see 8.2: ‘Free Measurement Vehicle Setup’ and 8.5: ‘Free Measurement Test Procedure’).</td>
</tr>
<tr>
<td>![Toggle Limits 2]</td>
<td>Toggle Limits 2</td>
<td>Indicates that limit set 2 is currently applied: click to toggle to limit set 1; (see 8.2: ‘Free Measurement Vehicle Setup’ and 8.5: ‘Free Measurement Test Procedure’).</td>
</tr>
</tbody>
</table>

Table 4-2 Gas Analyser Menu Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Free Measurement]</td>
<td>Free Measurement</td>
<td>Selects the Free Measurement Program (see 8: ‘Operation – The Free Measurement Procedure’)</td>
</tr>
<tr>
<td>![EU]</td>
<td>EU</td>
<td>Selects the EU test procedure (see 9: ‘Operation – The SUN EEC Test Procedure’).</td>
</tr>
<tr>
<td>![Gas Analyser System Setup]</td>
<td>Gas Analyser System Setup</td>
<td>Selects the The Gas Analyser System Menu</td>
</tr>
</tbody>
</table>
Table 4-2 Gas Analyser Menu Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![maintenance_icon]</td>
<td>Maintenance</td>
<td>Selects the Gas Analyser Maintenance Menu</td>
</tr>
<tr>
<td>![settings_icon]</td>
<td>Settings</td>
<td>Selects the Gas Analyser System Settings</td>
</tr>
<tr>
<td>![gas_system_info_icon]</td>
<td>Gas Analyser System Information</td>
<td>Selects Gas Analyser System Information</td>
</tr>
<tr>
<td>![software_update_icon]</td>
<td>Gas Analyser Software Update</td>
<td>Allows updated software to be loaded. Currently disabled.</td>
</tr>
<tr>
<td>![leak_check_vac_icon]</td>
<td>Leak Check (Vacuum)</td>
<td>Initiates the [Leak Check (Vacuum)] maintenance procedure.</td>
</tr>
<tr>
<td>![leak_check_gas_icon]</td>
<td>Leak Check (Gas)</td>
<td>Initiates the [Leak Check (Gas)] maintenance procedure.</td>
</tr>
</tbody>
</table>
Table 4-2 Gas Analyser Menu Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas Calibration Check</td>
<td>Initiates the Gas Calibration Check maintenance procedure.</td>
</tr>
<tr>
<td></td>
<td>Check/install O₂ Cell</td>
<td>Initiates the Check and/or Install the O₂ Cell maintenance procedure.</td>
</tr>
</tbody>
</table>

If a specific national test procedure is installed on the unit, the EU icon button will be replaced by the button relating to that procedure.
5 System and Gas Analyser General Screens

This Chapter contains:

- A description of the DGA 2500 Gas Analyser System Screens. Gas Analyser System Screens are defined as being screens shown by the DGA 2500 that do not relate to a specific test procedure. These Screens comprise:
 - The Gas Analyser Main Menu (5.1: ‘Gas Analyser Menu’).
 - The Gas Analyser System Menu (5.2: ‘The Gas Analyser System Menu’).
 - The Gas Analyser Maintenance Menu (5.3: ‘Gas Analyser Maintenance Menu’).
 - The Gas Analyser System Settings Screen (5.4: ‘Gas Analyser System Settings’).
 - The Gas Analyser System Information Window (5.5: ‘Gas Analyser System Information’).
- Details of the procedure to be followed in order to obtain a printout of the DGA 2500 gas analysis test results (5.6: ‘Print’).

Descriptions of the SUN® Diagnostic Platform Startup and General System Setup screens may be found in the Diagnostic Platform Operator’s Manual (5.1: ‘The Diagnostic Platform Main Menu’ & 5.2: ‘The General System Setup Screen’).
5.1 Gas Analyser Menu

To access the Gas Analyser Menu, select the “Gas Analyser” option from The Diagnostic Platform Main Menu (see the SUN® Diagnostic Platform Operator’s Manual 5.1: ‘The Diagnostic Platform Main Menu’).

The following options may be selected:

- Free Measurement Procedure.
- SUN EEC Test Procedure.
- The Gas Analyser System Setup Menu.

Note:

If the DGA 2500 is configured to perform a country specific test procedure, the SUN EEC test procedure will not be available. In this case the “SUN EEC Test” button will be replaced by an icon button corresponding to the country specific test in question.

- The “Free Measurement” procedure.

The Free Measurement procedure continuously measures and displays the values for all available test parameters. Upper and lower limits for any or all of these parameters may be introduced as required. Refer to 8: ‘Operation – The Free Measurement Procedure’ for further information.

- The “SUN EEC Test” procedure.
The SUN EEC Procedure is based on the provisions of EU directives which specify a procedure to be followed in testing motor vehicle emissions and prescribes maximum default values for certain gas emissions and related parameters. Refer to 9: ‘Operation – The SUN EEC Test Procedure’.

- The “System Setup” option.

 The The Gas Analyser System Menu allows operator maintenance functions to be initiated, gas analyser system settings to be made, gas analyser system information to be consulted and updates to the gas analyser software to be loaded. Refer to 5.2: ‘The Gas Analyser System Menu’ for further information.

- To return to the The Diagnostic Platform Main Menu, press the “Home” icon button on the toolbar.

- To place the Gas Analyser in Standby Mode, press the “Standby” icon button on the toolbar.

 Once the Gas Analyser is switched on, it should remain on for the whole working day, however, it is recommended that the unit should be put into Standby Mode when tests are not being performed. This will reduce waer and tear to the pump and increase the effective life of the filters.

 The unit will return to the normal operating mode when:

 - The “Standby” button is pressed once more, or
 - One of the Gas Analyser Main Menu option buttons (“Free Measurement”, “SUN EEC Test” “Country Specific Test”, or “System Setup”) is pressed.

 On leaving the Standby Mode, a Zero-calibration (see 6.2.4) and HC Residue Check (see 6.4) will automatically be performed before the unit returns to normal operation.
5.2 The Gas Analyser System Menu

To access the Gas Analyser System Menu, select the “System Setup” option from the Gas Analyser Menu (see 5.1).

The Gas Analyser System Menu allows access to:

- The Gas Analyser Operator Maintenance Procedures.
- The Gas Analyser System Settings Screen.
- The Gas Analyser System Information Screen.
- The Gas Analyser Software Update Screen.

To access the Gas Analyser Maintenance Menu, select the “Maintenance” menu button.

The Gas Analyser Maintenance Menu Screen will be displayed, via which leak checks, gas calibration checks and O2 sensor checks can be initiated. Refer to 5.3 for a description of the Maintenance Menu Screen and to Chapter 10: ‘Maintenance’ for details of the available maintenance procedures.

To access the Gas Analyser System Settings Screen, select the “System Settings” option.

The System Settings Screen allows settings to be made affecting the operation of the gas Analyser. Refer to 5.4 for further information.

To reveal the Gas Analyser System Information window, select the “System Information” option.

Figure 5-2 The Gas Analyser System Menu
The System Information Pop-up Window provides details of gas calibration dates, software versions etc. Refer to 5.5 for further information.

- To access the Software Update Screen, select the “Update Software” option.
 Details of the software update procedure will be supplied with the relevant software.
- Press “Back” or the “Gas Analyser” toolbar icon button to return to the Gas Analyser Menu.

5.3 Gas Analyser Maintenance Menu

To access the Gas Analyser Maintenance Menu, select the “Maintenance” option from the Gas Analyser System Menu (see 5.2).

The Maintenance procedures that can be initiated from the Gas Analyser Maintenance Menu are:
- Leak Check (Vacuum) (see 10.2).
- Leak Check (Gas) (see 10.3).
- Gas Calibration Check (see 10.4).
- Check and/or Install the O2 Cell (see 10.5).

- To initiate a Leak Check (Vacuum), select the “Leak Check (Vacuum)” option.
To initiate Leak Check (Gas), select the Leak Check (Gas) option.

To initiate a Gas Calibration Check, select the Gas Calibration Check Option.

To Check and/or Install the O2 Cell, select the O2 Sensor Check Option.

Details of the procedures for these checks are to be found in 10: ‘Maintenance’.

5.4 Gas Analyser System Settings

Figure 5-4 The Gas Analyser System Settings Screen

To access the Gas Analyser System Settings Screen, select the “System Settings” option from the The Gas Analyser System Menu (see 5.2).

The Gas Analyser System Settings Screen comprises drop-down menus for the selection of:

- Lambda/AFR.
- Summertime On/Off.
- LPG composition.

Use the “Summertime On/Off” drop-down menu to switch between Summertime/Wintertime.

The Summertime/Wintertime information is required by the gas module for the calculation of daily leak check and gas calibration intervals.
GAS ANALYSER SYSTEM SETTINGS

- Use the Lambda/AFR drop down menu to select either Lambda or Air Fuel Ratio (AFR).
 Depending on the selection, the unit will calculate and display either Lambda or Air Fuel Ratio.

- Use the LPG Composition drop-down menu to specify the appropriate ratio of Butane (C₄H₁₀) to Propane (C₃H₈) in the LPG fuel used by the test vehicle.
 The available range is from 100% Butane to 100% Propane in 10% increments. This information is required for the determination of the ratio of Hydrogen to Carbon present in the fuel, which information is, in turn, used for the accurate determination of Lambda.

Note:
The composition of LPG fuel may vary from country to country. If the composition of the LPG fuel is not known, set the Butane/Propane ratio to 50%/50%. If the composition is known (e.g. LPG used in the United Kingdom has a composition of 0% Butane/100% Propane), this ratio should be selected.

- Press “OK” to apply the settings made in the Gas Analyser System Settings Screen and return to the The Gas Analyser System Menu.
- Press “Cancel” to return to the The Gas Analyser System Menu without applying any changes made in the Gas Analyser System Settings Screen.
- Press the “Gas Analyser” toolbar button to return to the Gas Analyser Menu.
5.5 Gas Analyser System Information

To open the Gas Analyser System Information Window, select the “System Information” option from the The Gas Analyser System Menu (see 5.2).

The Gas Analyser System Information Window comprises six tabs:

- System Information (includes application versions, checksums etc.).
- Gas Tag Values (displays the composition of the gases used for gas calibration)
- Gas Settings (includes approval type, gas calibration interval, summertime on/off setting, daily leak check requirement etc.).
- Service Dates (shows the last and next calibration dates, last leak check date, date of sensor installation etc.)
- Factors (includes the applied PEF, NO gain and NO cell aging factors).
- File Versions (Lists the version numbers of .dll and .exe files in the DGA software)
5.6 Print

Note:
The DGA 2500 uses the same “Print” procedure to provide a printout of all gas analyser test results. The following description is, therefore, applicable irrespective of whether the Free Measurement, SUN EEC or Country Specific test procedure is employed.

- Open the “Notes” dialog box:
 - By pressing the “Print” toolbar icon button, or
 - By pressing the “Print” text button in the The Print Preview Window (Free Measurement procedure only (see 8.7)).

The “Notes” dialog box will be displayed. The vehicle identification information headings, entered via the “Printout Footer” box of the The General System Setup Screen (see the Diagnostic Platform Operator’s Manual 5.2: ‘The General System Setup Screen’), will be shown in the left-hand text box.

- Enter the vehicle identification information for the test vehicle in the right-hand text box, opposite the appropriate heading.

- Press “OK” to make a printout of the test results.
A typical sample results printout is illustrated below.

- Press “Cancel” to abort the print instruction and return to the test procedure.

Note:
Calculated values will be shown for either Lambda or AFR depending on the setting made in the Gas Analyser System Settings Screen (see 5.4).

Note:
Although the printout format allows all test parameters to be shown, numerical values will only be shown for the limit values applied and test results obtained during the current test. Fields for which no data is available will show a series of dashes.

![Sample Printout](image)

Figure 5-8 Sample Printout
6 Preparatory Steps

6.1 Connections

Warning:
For your own and other people’s safety the DGA 2500 must only be used in a well ventilated clean air environment

6.1.1 Power Connections

Caution:
Before making any power connections ensure that the mains power switch is set to “off” and that the mains voltage selector switch is set to correspond with the local mains supply voltage.

Power is supplied to the Gas analyser from the SUN® Diagnostic Platform electrical distribution block via an electrical input socket located on the rear panel of the Gas Module (see 4.2: ‘Gas Module Layout’).

6.1.2 Data Connections

Communication between the PC, Gas Module, ROTI module and infrared Remote Control Receiver takes place via the USB (Universal Serial Bus) connectors located on the Gas Module rear panel (see 4.2: ‘Gas Module Layout’).

An optional USB to 4 x RS232 connector may be installed in the Gas Module allowing for communication with optional ancillary equipment (Smoke Meter, Portable Data Link Etc.). Connection details for such optional ancillary equipment will be found in the relevant documentation that will be supplied together with the equipment.

- Connect the PC USB port to the Gas module via the USB P.C. interface connector on the Gas Module rear panel.
 The P.C. interface is marked with the letter “E” on the Gas Module rear panel.
- Connect the ROTI Module and Remote Control Receiver to the USB connectors on the Gas Module rear panel.
The USB connectors are marked with the letters “F”, “G” and “H” on the Gas Module rear panel. Connect the ROTI Module to “G” and the Remote Control Receiver to “F”.

Note:
If the DGA 2500 is used in conjunction with a Portable Data Link (Scanner), the unit will derive rpm and oil temperature data direct from the test vehicle engine management system via the PDL. In this case the use of the ROTI Module is unnecessary.

• Connect the Printer, Mouse and Keyboard to the P.C. Printer, Mouse and Keyboard ports.

6.1.3 Gas Module Pneumatic Connections

• Connect the Exhaust Sample Probe and Hose to the Gas Sample Inlet on the Gas Module rear panel.

Note:
Do not insert the Sample Probe into the vehicle exhaust tailpipe at this stage.

6.2 Start-Up

6.2.1 Power Up

• Set the Main, PC and Gas Module power switches to “On”.
 The PC will load the Windows Operating System. After a short interval the Windows desk-top will be displayed.

Note:
For normal operating purposes it is recommended that the PC and Gas Module power switches be left permanently in the “On” position and that the unit be turned on and off with the Diagnostic Platform main power switch.

• Select the SUN® Diagnostic Platform program using either the Windows start menu or the shortcut on the desk-top.
 The operating system will load the software and the Diagnostic Platform Main Menu will be displayed (see the Diagnostic Platform Operator’s Manual 5.1: ‘The Diagnostic Platform Main Menu’).

• Select the Gas Analyser option from the Main Menu.
 Selecting the Gas Analyser mode will display the Gas Analyser Menu (see 5.1: ‘Gas Analyser Menu’).
Note:
The body of this manual concerns the operation of the DGA 2500 in Gas Analyser mode only. Information concerning the use of the unit in conjunction with the Diesel Smoke Meter, Portable Data Link, and Engine Diagnostics menu options will be provided as separate documentation.

6.2.2 Gas Analyser Start-up

At start-up, the analyser will automatically perform the following functions in sequence:

- Warm up.
- Zero-calibration.
- HC residue check.

While these functions are being performed, “pop-up” windows will be automatically displayed showing the status of the unit. These windows will automatically close when the function has been successfully completed. They may be manually closed at any time to give full access to the screen buttons.

Note:
A manually closed pop-up window can reappear if a new screen is selected which requires a change in the Gas Analyser mode, e.g. a pop-up screen can reappear if a leak check is selected but will not reappear when moving to a different menu or set-up screen.

If the system is configured to require a Daily Leak Check (see 6.3), the operator will be prompted to perform this during the initial start-up sequence.

6.2.3 Warm up

The warm-up and stabilisation period normally lasts approximately 90 seconds. During this time:

- The pump will run continuously.
- The unit will check for condensation in the gas bench.
- The warm up pop-up screen will be displayed showing the elapsed warm up time (unless manually closed).

If the gas bench and PC are switched on simultaneously (by use of the main power switch), the warm-up period will proceed in the background whilst the PC loads the Windows operating system. Since the time needed to load the operating system is greater than the warm-up period, the latter will not be apparent to the operator. Conversely, if the gas bench is switched on after the operating system and Diagnostic Platform software has been loaded by the PC, the warm-up period will be visible.
Chapter 6: Preparatory Steps

Note:
The warm up period cannot be overridden by the operator.

At the end of the warm up period the unit will proceed to zero-calibration.

6.2.4 Zero-calibration

Zero-calibration, which allows the Gas Module to determine the correct zero reference and gain settings, lasts approximately 30 seconds. During this time:

- The pump will initially be off and will cut in after approximately 10 seconds.
- The zero-calibration pop-up screen will be displayed showing the elapsed calibration time.

An zero-calibration may be triggered in three ways:

- As part of the start-up procedure or on return from standby mode (initial zero-calibration).
- Automatically by the Gas Bench as required (automatic zero-calibration; see note below).
- Manually by the operator from The Free Measurement Screen (see 8.1) (manual zero-calibration).

An initial or manual zero-calibration (but not an automatic zero-calibration) will be followed by a HC residue check (see below).

If the system is configured to require a Daily Leak Check, the unit will prompt the operator to perform this at the end of the zero-calibration period. Until a successful leak check has been preformed all measurements will be blocked and it will not be possible to proceed beyond the Gas Analyser Menu (see 6.3: 'Daily Leak Check' below for further details).

Note:
The gas bench automatically assesses the stability of the zero reference and gain settings and will perform an zero-calibration as and when required. The frequency with which an automatic zero-calibration is performed will depend on the stability of the environment in which the analyser is operated. If a CO₂ concentration of 0.5 % vol. or greater is detected at the time the gas bench determines that an automatic zero-calibration is necessary, the software will assume that gas measurements are currently being taken. In this case the zero-calibration will be delayed until the CO₂ measurement has fallen below 0.5% vol. or for a maximum of 30 minutes. The Error/Warning toolbar button will be displayed. If this button is pressed, error/warning code 06 will be seen, advising that a zero-calibration is pending.
Note:

During zero-calibration the DGA 2500 derives the zero reference point settings from the atmospheric conditions of the environment in which it is operated. If the operating environment is poorly ventilated, or if sources of atmospheric pollution (e.g. petrol soaked rags etc.) are present in close proximity to the unit, this may lead to the zero reference points being set too high. This may, in turn, lead to vehicle emission readings that are below the zero reference settings of the analyser ("negative indications"). To avoid this problem, the operating environment should be well ventilated and possible sources of atmospheric pollution should be removed.

6.3 Daily Leak Check

The accuracy of test measurements will be compromised if ambient air is allowed to enter the analyser sampling and/or pneumatic systems. In order to ensure the integrity of the system, the standard software configuration requires that a leak check should be carried out prior to the commencement of each day’s operation. The unit will not be capable of normal operation unless a successful leak check has been carried out within the preceding 24 hours. If the operator fails to carry out a daily leak check, or if a leak check is failed, an error warning will appear in the toolbar and all gas measurements will be blocked until a satisfactory leak check has been performed.

Note:

If the unit is left running continuously, the standard software configuration will require a leak check to be performed within 24 hours of the previous check. If the unit is switched off (e.g. overnight) the software will require a leak check at the start of each operating day even if the previous leak check was performed within the last 24 hours.

Note:

The daily leak check requirement may be deactivated by Sun service personnel unless the unit is configured for an approval type under which such a check is mandatory.

The leak check requirement may be satisfied by the successful performance of either:

- A Leak Check (Vacuum) (see 10.2), or
- A Leak Check (Gas) (see 10.3).
6.4 HC Residue Check

A HC residue check will follow every initial or manually triggered zero-calibration.

The HC residue check will be aborted or postponed if a maintenance function is selected (e.g. in order to perform a leak check) The residue check will be resumed when the maintenance function is exited.

The HC residue check lasts a minimum of 20 seconds with no upper time limit. During the check the unit will:

- Display the HC Residue Check pop-up window.
- Determine the concentration of hydro-carbons present in the gas circuit. If a concentration greater than 20 ppm is found the pop-up window will continue to be displayed and all measurements will be blocked until the concentration of HC present in the analyser has fallen to within the acceptable limits.

Caution: The sample probe must not be allowed to remain in the vehicle exhaust tailpipe during the HC residue check. A concentration of more than 0.5 % vol. co2 detected during the check indicates that vehicle exhaust gases are being drawn into the unit. The program will prompt the operator to remove the sample probe from the tailpipe and all measurements will be blocked until this has been done.

As ambient air is drawn through the gas circuit, the concentration of HC should fall. If the residue has not fallen to within acceptable limits within a reasonable time (1 – 2 minutes), the sample hose and probe should be cleaned in accordance with the instructions contained in 10.6: 'Routine Maintenance Procedures' and the zero-calibration procedure repeated.

If the concentration of HC does not fall to within acceptable limits after the sample hose and probe have been cleaned the HC residue check pop-up window will continue to be displayed. Switch the unit off and back on in order to reset the machine. Repeat the calibration and HC residue check procedure. If the concentration of HC is still too high, service is required. Contact your SUN service centre or dealer.
6.5 **Settings**

The following settings must be made before the unit is ready for operation:

6.5.1 Fuel Type Selection

The correct fuel type for the vehicle under test should be selected in the Vehicle Setup screen.

- Select the vehicle fuel type (LPG, CNG or Petrol) from the fuel type drop down menu as described in 8.2: ‘Free Measurement Vehicle Setup’ and 9.2: ‘SUN EEC Test Vehicle Set-up’.

6.5.2 Speed Factor Setting

Refer to the SUN® Diagnostic Platform Operator’s Manual (6.2: ‘RPM Measurement and Speed Factor Selection’) for details of factors governing Speed Factor selection.

To set the Speed factor:

- Open the vehicle setup screen.
- Select and apply the Speed Factor as described in 8.2: ‘Free Measurement Vehicle Setup’ or 9.2: ‘SUN EEC Test Vehicle Set-up’.

6.5.3 Lambda/AFR Selection

The DGA 2500 calculates and can display either Lambda (λ) or Air Fuel Ratio (AFR).

To select Lambda or AFR:

- Open the Gas Analyser System Settings screen (see 5.4).
 - To reach the Gas Analyser System Settings screen select the “System Settings” icon button in the Gas Analyser Menu (see 5.1). The Gas Analyser System Menu (see 5.2) will be displayed. Select the “Settings” Icon button in the The Gas Analyser System Menu, the Gas Analyser System Settings page will be shown.
- Select Lambda or AFR as required.
6.6 Vehicle Connections

Caution:

Route the rpm pick-up lead and oil temperature probe clear of any hot or moving engine parts.

6.6.1 RPM Pick-Up

Refer to the SUN® Diagnostic Platform Operator’s Manual (6.2.1: ‘RPM Pick-up (Otto Engines)’) for details of rpm pick-up connection.

6.6.2 Oil Temperature Probe

Refer to the SUN® Diagnostic Platform Operator’s Manual (6.3: ‘Oil Temperature Measurement’) for details of oil temperature measurement.
7 Operation — General

The following sections contain general information applicable to all test procedures. Specific information relating to the performance of tests using the Free Measurement Procedure and the SUN EEC Test Procedure may be found in 8: ‘Operation – The Free Measurement Procedure’ and 9: ‘Operation – The SUN EEC Test Procedure’ respectively.

Information necessary to conduct country specific tests (MOT, AU, APK etc.) will be provided in separate documentation.

7.1 Testing Tips

- Read and follow the procedures in this manual.
- Keep the probe tip openings clean and free from debris.
- Do not place the probe tip in liquids or allow liquids to be drawn into the analyser sampling system. Contamination will affect the accuracy of any future tests.
- Do not insert the probe into an exhaust pipe until the vehicle engine is at normal operating temperature. This allows time for the exhaust system to vaporize any residual moisture.
- Never move the analyser by pulling on the probe, sample hose or power cord.
- Never drive over the probe, sample hose or power cord.
- Never place any liquids on the analyser that could spill and run into the ventilation holes.
- Clean any spilt liquids (gasoline, brake fluid, cleaning solvents etc) from the exterior of the analyser immediately in order to protect the finish.
- In order to ensure accurate test results, perform a daily Leak Check (Vacuum) as described in 10.2: ‘Leak Check (Vacuum)’ below. This check should also be performed after probe changes or filter service.
- Prolonged use of the analyser in conjunction with a dynamometer and a hot running vehicle under load may damage the sample probe and affect readings. An alternative sample probe (P/N: 7009-1869-00) is available for use in these circumstances.
• The O₂ Sensor is stated by the manufacturer to have life expectancy of 24 months from the date of manufacture, irrespective of how often the analyser is used.

• The (optional) NO sensor has a minimum life expectancy of 24 months after installation or until it undergoes a 20% signal strength loss, whichever occurs sooner. It is powered by an internal battery. The analyser must run at least 12 hours over a 30 day period to maintain this battery at full charge.

7.2 Measurement Procedure

Caution: ☢️

In order to ensure representative measurements, The engine should be at normal operating temperature.

Note: ☞

Under moderate loads and operating at moderate speeds a typical nominal oil temperature is approximately 85 °C. Under these circumstances a temperature of 65 °C is considered to be low and a temperature of 105 °C is considered to be high. At idling speeds engine oil temperature does not, generally, reach a nominal value. Proper oil temperature depends on the engine operating conditions, but may be considered acceptable if falling within the range mentioned above.

During testing, engine exhaust gas samples are continuously gathered by means of the Exhaust Sample Probe inserted into the vehicle’s exhaust tail pipe.

The DGA 2500 continuously determines the amount of CO, CO₂, HC and O₂ present in the exhaust sample. In the Free Measuring Procedure these values are continuously displayed in the parameter windows together with the values for CO corrígé, engine speed and oil temperature. If the optional NO sensor is present the value for NO will also be measured and displayed. Depending on the selection made (see 6.5.3: ‘Lambda/AFR Selection’), the value for Lambda or Air Fuel Ratio will also be displayed. In the SUN EEC Procedure the values measured are displayed in the Results Screen at the conclusion of the test.

Besides determining whether or not the vehicle exhaust emissions comply with legal requirements, emissions tests may be performed at various engine speeds and under various conditions, forming a valuable diagnostic aid in the discovery of a variety of engine, ignition and fuel system service requirements.
SHUT DOWN PROCEDURE

After all necessary settings and connections have been made, proceed as follows:

- Start the vehicle engine and allow the oil temperature to come up to normal operating temperature (see Note above).
- Insert the sample probe fully into the vehicle tailpipe.

Note:

On exhaust systems having twin tail pipes that exit a common resonator or muffler the exhaust gas sample may be diluted by ambient air entering the system via the tail pipe that is not in use for sampling. To prevent this, block off the tail pipe that is not in use for the sample probe.

Note:

Do not block off a tail pipe if the vehicle is being operated on a chassis dynamometer. Always be sure to unblock the tail pipe when testing is complete.

Caution:

Do not leave the sample probe in the tail pipe when measurements are not being made, as this will shorten the life of the filter elements.

- When testing has been completed and the test results have been printed or noted, remove the sample probe from the tail pipe and store it in a dust and water free environment until it is required again.
- Remove the Oil Temperature probe from the dipstick tube and reinsert the oil dipstick.
- Disconnect the rpm pick-up.

Caution:

If the dipstick is of an adjustable type, ensure that it is properly adjusted before re-inserting it into the dipstick tube.

7.3 Shut Down Procedure

Refer to the SUN® Diagnostic Platform Operator’s Manual (6.4: ‘Shut Down Procedure’) for details of the shut down procedure.
8 Operation – The Free Measurement Procedure

The Free Measurement program allows the DGA 2500 to be used as a diagnostic tool for the investigation of the fuel, ignition and emission control systems of a vehicle without applying the limits and procedures specified in any local, national or international test. By operating the vehicle under varying conditions (if necessary on a chassis dynanometer) it is possible to:

- Identify emission failure areas.
- Reduce emissions in general.
- Locate/correct driveability problems.

The driveability and emissions symptoms (or combinations of symptoms) that can be addressed include:

- Engine will not crank.
- Engine will crank but will not start.
- Engine is hard to start.
- Malfunction lamp is on.
- Engine stalls.
- Engine shows hesitation, sag, stumble and/or lack of power, is sluggish or feels spongy.
- Engine surge.
- Engine misses or cuts out.
- Engine backfires.
- Excessive engine noise.
- Excessive emissions or a failed emission test.
- Poor fuel economy.
- Incorrect idle.
- Engine jumps or jerks.
- Excessive exhaust odour.
- Excessive exhaust smoke.
- Fuel odour and/or dieseling or run-on.
In testing emission control devices any of the following tests may be performed as necessary, applicable or useful:

- Exhaust Gas Recirculation Valve.
- Positive Crankcase Ventilation (PCV) Valve.
- Air Pump
- Carburettor Adjustments for Vehicles Without Feedback Systems,
- Lean-misfire Adjustment.
- Lean-drop Adjustment.
- Accelerator Pump.
- Power Valve.
- High Fuel Level in Float Chamber.
- Testing the Cooling System for Combustion Gases.
- Fuel Leak.
- Exhaust Leak.
- Testing for Fumes in the Passenger Compartment.
- No-start Condition – Fuel.

The following section provides a brief description of the screens that will be encountered during the Free Measurement Procedure

8.1 The Free Measurement Screen

![The Free Measurement Screen](image)
THE FREE MEASUREMENT SCREEN

- To open the Free Measurement Screen, select the “Free Measurement” option from the Gas Analysers Menu (see section 5.1).

The Free Measurement Screen displays the current values for the test parameters that are continuously being analysed by the unit. These values may be compared with two Limit Sets stored in the unit memory. Limit Sets 1 and 2 are intended for use with measurements at high and low engine speeds respectively.

Unlike the EU and country specific test procedures, available under the DGA 2500 software, the Free Measurement Procedure does not incorporate the requirements of any regulatory authority. The upper and lower limits for each test parameter may be either edited by the operator or disabled entirely.

Numerical values for the measured gas emissions, lambda/AFR, oil temperature and engine speed are shown in the nine fields comprising the bulk of the screen. The field background will be Green so long as the measured value for a particular parameter falls within the applied limits but will change to Red if the values fall outside these limits.

An analog representation of the current test values, in relation to the applied limits, is given by the coloured bars associated with each parameter field. The Green section of these bars shows the range of values falling within the limits whilst the Red sections indicate values above and below the acceptable range. The relative proportions of the Green and Red areas will reflect the limits applied. The value currently measured for each parameter is represented by a thin Yellow band.

If no limit sets are applied, or if no measurements are available, the parameter field backgrounds and the analog bars will be Grey.

The current parameter values may be frozen, stored in the unit memory or printed out at any time during normal operation.

- To specify the vehicle setup via the Free Measurement Vehicle Setup Screen, press the “Vehicle Setup” toolbar button (see 8.2).
- To print test result data, press the Print button (see 5.6).
- To review or delete data stored in the data buffers, press the “Print Preview” button to open the The Print Preview Window (see 8.7).
- To manually initiate an Zero-calibration, press the “Zero-calibration” button (see 6.2.4).
- To toggle between limit sets, press the “Toggle Limit Sets” button (see 8.6: ‘Storing Data in the Data Buffers’).
- To freeze the current readings, press the “Freeze” button (see 8.6: ‘Storing Data in the Data Buffers’).
- To store the current readings, press the “Store” button.
The “store” button is only available after the “Freeze” button has been pressed (see 8.6: ‘Storing Data in the Data Buffers’).

- To unfreeze the frozen readings, press the “Unfreeze” button. The unfreeze button is only available after the “Freeze” button has been pressed (see 8.6: ‘Storing Data in the Data Buffers’).
- To return to the Gas Analyser Menu, press the “Gas Analyser” toolbar button.

8.2 Free Measurement Vehicle Setup

To access the Free Measurement Vehicle Setup Screen, press the “Vehicle Setup” toolbar button in the The Free Measurement Screen (see section 8.1).

In the Free Measurement Vehicle Setup Screen it is possible to:
- Specify the vehicle fuel type.
- Save the current set-up to file.
- Load a previous set-up from file.
- Load the SUN default set-up.
- Enable/disable limit sets.
- Edit limit sets.
- Enter the speed factor.
The vehicle fuel type, limit set values, limit sets On/Off setting and the speed factor are collectively referred to as the “Vehicle Setup”.

8.3: ‘Saving and Loading Vehicle Setups’ and 8.4: ‘Editing Limit Sets’ provide information on saving, loading and editing Vehicle Setups.

- Use the Fuel Type Drop-down Menu to select the correct fuel type for the vehicle under test (see 6.5.1: ‘Fuel Type Selection’).
 - Petrol (default).
 - LPG (Liquified Petroleum Gas).
 - CNG (Compressed Natural Gas).
 Refer to the Diagnostic Platform Operator’s Manual (4.4: ‘Drop-down Menus’) for details of the use of drop-down menus.

Note: In the event of the fuel type LPG being selected, ensure that the correct Butane/Propane ratio is entered in Gas Analyser System Settings Screen (see 5.4). Failure to set the correct ratio may result in inaccurate lambda calculation.

- Select the appropriate Speed Factor.
- The Speed Factor is the factor that must be applied to the raw rpm data received by the unit (e.g. from the inductive pick-up) in order to arrive at a true engine speed reading. For further information concerning Speed Factor selection refer to the Diagnostic Platform Operator’s Manual (6.2.3: ‘Speed Factor Selection’). The Speed Factor currently applied is highlighted in green in the Speed Factor section of the Vehicle Setup Screen. To change the applied factor:
 - Click with the mouse on the desired new Speed Factor, or
 - Select the new Speed Factor using the keyboard or remote control left and right cursor keys and press the “Enter” key to confirm the new factor.

 A thin yellow frame will move along the series of Speed Factor values as the cursor keys are pressed. When the “Enter” key is pressed the green highlight will move to the newly selected value.

- Use the “Limits” button to enable or disable the Limit Sets.
 Pressing the “Limits” button will change the status of the limit sets from ON to OFF and vice versa. The “Limits” button will be Green when the limits are switched ON and Red when the limits are switched OFF.

To toggle between “Limit Sets On” and “Limit Sets Off” or vice versa:

- Click with the mouse on the “Limits” button, or
- Select the “Limits” button with the cursor keys and press “Enter”.

8.3 Saving and Loading Vehicle Setups

The vehicle setup currently displayed in the Vehicle Setup Screen can be saved in the PC memory for future use.

The information stored will be:
- Fuel type
- Speed Factor
- Limits On/Off
- Limit set values.

To save the current vehicle setup:
- Press the “Save Setup” button.
 The Save Limits File dialog box will be displayed.
- Check the location to which the file is to be saved.
- Enter a name for the file in the File name box.
- To save the setup click “Save” or press the “Enter” key.
 The file containing the vehicle setup will be saved and can be recalled for future use using the “Load Setup” button.
- To cancel, click the “Cancel” button or press the “Esc” key.
 The Save Limits File box will be closed without storing the setup.

To load a previously saved setup:
- Press the “Load Setup” button.

Figure 8-3 The Save Limits Dialog Box

- Check the location to which the file is to be saved.
- Enter a name for the file in the File name box.
- To save the setup click “Save” or press the “Enter” key.
 The file containing the vehicle setup will be saved and can be recalled for future use using the “Load Setup” button.
- To cancel, click the “Cancel” button or press the “Esc” key.
 The Save Limits File box will be closed without storing the setup.
The Load Limits File dialog box will be displayed).

![Image of Load Setup Dialog Box]

Figure 8-4 The Load Setup Dialog Box

- Select the file to be loaded with the mouse or enter the file name in the file name box.
- Click “Open” in the dialog box or press the “Enter” key. The loaded set-up will be applied in the Free Measurement Screen.
- To load the SUN default set-up, press the “Load Default” button.
- The software will warn that loading the default set-up will cause data stored in the buffers to be lost and ask for confirmation before continuing. Click “Yes” to proceed with loading the defaults or “No” to continue using the current settings.

8.4 Editing Limit Sets

![Image of Edit Limit Sets Window]

Figure 8-5 The Edit Limit Sets Window
To alter any or all of the limit values currently shown in the Vehicle Setup Screen:

- Press the “Edit Limit Set” button corresponding to the Limit Set to be edited.
 The Edit Limit Set Window will be displayed.
- Use the keyboard to make the required alterations.

To alter a limit value:

- Select the value to be altered using the “Tab” key.
 The selected field will be highlighted in Blue.
- Use the “Backspace” key to delete the current value.
- Enter the required new value.
- Repeat the procedure for all values that are to be altered.
- If required, repeat the procedure to edit the other limit set.
- To apply the new values, click “OK” or press the “Enter” key.
 The new values will be applied and the window will be closed.
- To cancel the alterations and return to the Vehicle Setup Screen, click “Cancel” or press the “Esc” key.
 The window will be closed and the current limit values will continue to be applied.

8.5 Free Measurement Test Procedure

Note:
The following description of the Free Measurement Test Procedure assumes that the Limit Sets are applied and that gas readings are required at both high and low engine revolutions. This may not be the case in all circumstances. Since the Free Measurement Procedure is highly flexible and is suitable for a variety of diagnostic purposes, the description below should be considered to be a guideline only. An experienced operator may, for instance, consider that to perform both a high speed and a low speed test is, in certain cases, unnecessary in view of the diagnostic purpose of the test.

To make gas measurements using the Free Measuring procedure:

- Select the The Free Measurement Screen from the Gas Analyser Menu (see 5.1 and 8.1).
- Make any necessary amendments to the vehicle setup in the Free Measurement Vehicle Setup Screen (see 8.2).
- Allow the vehicle to come to normal operating temperature.
STORING DATA IN THE DATA BUFFERS

- Insert the exhaust probe fully into the vehicle tail pipe.
 Refer to the notes to 7.2: ‘Measurement Procedure’ if the test vehicle is equipped with twin tail pipes.

- Select Limit Set 1 (see 8.1: ‘The Free Measurement Screen’)

- Accelerate the engine until the rpm reading falls within the Green band of the Free Measurement Screen rpm indicator.

- Maintain a steady engine speed and allow the gas readings to stabilize (approx. 30 seconds).

- Store the Limit Set 1 test results in data buffer 1 as described in 8.6: ‘Storing Data in the Data Buffers’.
 After the test data for Limit Set 1 has been stored Limit Set 2 will be automatically selected and the "Toggle Limit Sets" button will show Limit Set 2. The Green and Red indicator bands will change to represent the Limit Set 2 values. The fact that data is now stored in data buffer 1 will be confirmed by the appearance of the figure “1” in the Free Measurement Screen toolbar.

- Reduce the engine speed until the rpm indicator is between the upper and lower limits specified for Limit Set 2, maintain a steady engine speed and allow the gas readings to stabilize once more.

- Store the Limit Set 2 test results in data buffer 2.
 After the test data for Limit Set 2 has been stored the “Toggle Limit Sets” button will show that Limit Set 1 has been automatically reselected and the indicator bands will change accordingly. A figure “2” will appear in the toolbar, confirming that data is stored in data buffer 2.

The data stored in the data buffers can be reviewed, printed or deleted via the The Print Preview Window (see 8.7).

8.6 Storing Data in the Data Buffers

Current test readings to which a Limit Set has been applied may be temporarily stored in one of the two data buffers. This temporary storage allows the second Limit Set to be applied without the loss of the initial test results. Data to which Limit Set 1 is applied will be stored in buffer 1 and data to which Limit Set 2 is applied will be stored in buffer 2.

Note:

The following description assumes that the Free Measurement Procedure is performed as outlined in 8.5: ‘Free Measurement Test Procedure’ (i.e. the data to which Limit Set 1 has been applied is to be stored before Limit Set 2 is applied). Although this will be the usual procedure, it should be noted that it is possible to apply Limit Set 2 before Limit Set 1 or to apply either Limit Set independently.
To store data in data buffer 1:

- Apply Limit Set 1 using the “Toggle Limit Set” button.

![Figure 8-6 Apply Limit Set 1](image)

- Take the Limit Set 1 gas measurements as outlined in 8.5: ‘Free Measurement Test Procedure’.
- Press the “Freeze” toolbar button.

![Figure 8-7 Freeze Limit Set 1 Readings](image)

- The “Freeze” button will be replaced by the “Store” and “Undo” buttons. The “Store” button will be automatically selected (indicated by a Green background – see Figure 8-8).
- Press “Store” to store the data or “Undo” to unfreeze the data and return to continuous measurement.

![Figure 8-8 Store Limit Set 1 Readings](image)

- If the “Store” button is pressed:
 - The “Store” and “Undo” buttons will be replaced by the “Freeze” button.
 - The “Freeze” button will be automatically selected.
 - The number “1” (corresponding to the Limit Set and data buffer selected) will appear in the toolbar indicating that the data is stored in data buffer 1.
 - Limit Set 2 will be applied automatically and the “Toggle Limit Sets” button will change accordingly.
STORING DATA IN THE DATA BUFFERS

Note:
If the "Undo" button is pressed the "Store" and "Undo" buttons will be replaced by the "Freeze" button. The "Freeze" button will be automatically selected. Limit Set 1 will continue to be applied.

- Take the Limit Set 2 gas measurements as outlined in 8.5: 'Free Measurement Test Procedure'.
- Press the "Freeze" toolbar button.

Figure 8-9 Freeze Limit Set 2 Readings

The "Freeze" button will be replaced by the "Store" and "Undo" buttons. The "Store" button will be automatically selected (indicated by a Green background – see figure below).

- Press "Store" to store the Limit Set 2 data or "Undo" to unfreeze the data and return to continuous measurement.

Figure 8-10 Store Limit Set 2 Readings

The number “2” will appear alongside the number “1” in the toolbar indicating that data is now stored in both buffers.

Limit Set 1 will be automatically applied for the next set of measurements and will be shown by the “Toggle Limit Sets” button. The “Freeze” button will be automatically selected.

Figure 8-11 Limit Set 1 and 2 Readings Stored

- Press the “Print preview” button to review the stored data
8.7 The Print Preview Window

To open the Print Preview Window, press the "Print Preview" toolbar button on the The Free Measurement Screen toolbar. The Print Preview Window will be displayed. The window shows the measurements stored in the data buffers (1 & 2) together with the limit values applied. By using the text buttons in the Print Preview Window it is possible to:

- Delete either or both sets of test measurements.
- Proceed to the "Print" Window.

To delete data stored in buffer 1 (Limit Set 1), press "Delete Set 1". The gas measurements stored in buffer 1 will be deleted.

To delete data stored in buffer 2 (Limit Set 2), press "Delete Set 2". The gas measurements stored in buffer 2 will be deleted.

Note:

Pressing the delete buttons in the Print Preview Window will only cause the stored test data to be deleted. The limit set values will continue to be shown and applied until either a new vehicle setup (having different limit values) is applied or the limit sets are disabled.

- To access the Print Screen, press the "Print" button.
- To return to the The Free Measurement Screen, press the “Back” button.
8.8 Printing Test Results

Refer to 5.6: ‘Print’ for information on printing test results
9 Operation – The SUN EEC Test Procedure

9.1 Introduction

The Sun EEC Test Procedure allows emission testing in accordance with EEC council directives.

The procedure described in this chapter is designed for use with vehicles fitted with “Otto” engines (powered by petrol, liquified petroleum gas or compressed natural gas). The procedure for testing vehicles with diesel engines will be described in separate documentation.

For the purposes of the test procedure, vehicles are divided into three categories:

- Vehicles fitted with a regulated catalytic converter (Catalyst Test).
- Vehicles without a catalytic converter manufactured prior to 1 October 1986 (Non-catalyst Test 1).
- Vehicles without a catalytic converter manufactured on or after 1 October 1986 (Non-catalyst Test 2).

Non-catalyst test 1 and non-catalyst test 2 differ from each other solely in respect of the maximum permitted level of CO. Since the two non-catalyst tests procedures are, in all other ways, identical, they will be treated as a single procedure for the purposes of this description.

When performing a SUN EEC test on vehicles fitted with a catalytic converter, measurements will be taken at both normal and fast idle engine revolutions. In the case of tests on vehicles without a catalytic converter, measurements will only be taken at normal idle engine speed.

The DGA 2500 software compares the test results obtained against sets of pre-defined limits. These limits may be either the SUN EEC default limits (included in the program) or an alternative limit set edited and entered by the operator. When testing catalytic converter equipped vehicles two limit sets (one for normal idle speed and one for fast idle speed) are applied.

Measurement parameters to which limit values are not applied will be determined in both catalyst and non-catalyst procedures and will appear in the Results Screen and results printout but will not affect the overall (pass/fail) test result.
When testing catalyst equipped vehicles at fast idle, upper and lower limits may be set for CO, HC, lambda, rpm and oil temperature. At normal idle, limits may be set for CO, rpm and oil temperature.

In the non-catalyst test procedures, which are conducted at normal idle speed only, limits may be set for CO, HC, rpm and oil temperature.

9.2 SUN EEC Test Vehicle Set-up

The SUN EEC Test Vehicle Set-up Screen is automatically displayed when the SUN EEC Test Procedure option is selected in the Gas Analyser Menu (see 5.1).

In the Vehicle Setup Screen it is possible to:

- Specify the vehicle fuel type (petrol, LPG, or CNG).
- Specify the vehicle category and test procedure (catalyst, non-catalyst 1, or non-catalyst 2).
- Save the current set-up to file.
- Load a previous set-up from file
- Load the SUN EEC default set-up.
- Edit limit sets.
- Enter the speed factor.

The vehicle fuel type, vehicle category, limit set values, and the speed factor are collectively referred to as the “Vehicle Setup”.

9.3 ‘Editing Limit Sets’ provides information on editing Limit Set values.

9.4 ‘Saving and Loading Vehicle Set-ups’ provides information on saving and loading Vehicle Setups.

When the EEC Test Procedure is selected the unit will automatically carry out a zero-calibration and HC Residue check. During these checks the Zero-calibration and HC Residue Check pop-up windows will be displayed (see 6.2: ‘Start-Up’). These windows may be manually closed to allow access to the Vehicle Set-up Screen but measurements will not be possible until the zero-calibration and HC Residue checks have been completed.

Use the Fuel Type Drop-down Menu to select the correct fuel type for the vehicle under test.

The available alternatives are:

- Petrol (default).
- LPG (Liquefied Petroleum Gas).
- CNG (Compressed Natural Gas).
Refer to the Diagnostic Platform Operator’s Manual (4.4: ‘Drop-down Menus’) for details of the use of drop-down menus.

The measurement parameter field that shows “HC” when the fuel type “Petrol” is selected will change when the fuel type “LPG” or “CNG” is selected and will show “LPG” or “CNG” respectively.

Note:

In the event of the fuel type LPG being selected, ensure that the correct Butane/Propane ratio is entered in Gas Analyser System Settings Screen (see 5.4). Failure to set the correct ratio may result in inaccurate lambda calculation.

- Select the appropriate vehicle category using the Vehicle Category drop-down menu.

 The selection made in the Vehicle Category menu determines which test procedure will be used and which set of default limit values are applicable.

 The possible alternatives are:

 - Vehicles equipped with a regulated catalytic converter (Catalyst Test)
 - Vehicles without a catalytic converter, built prior to 1 October 1986 (Non-catalyst Test 1, maximum default CO limit 4.5% vol. CO)
 - Vehicles without a catalytic converter, built October 1986 or later (Non-catalyst Test 2, maximum default CO limit 3.5% vol. CO)

The Vehicle Set-up Screen will vary depending on the vehicle category selected. The figures below illustrate the vehicle set-up screens for both catalyst and a non-catalyst tests.

![Figure 9-1 The EEC Test Procedure Vehicle Setup Screen (Catalyst Test)](image)
CH A P T E R 9 OPERATION – THE SUN EEC TEST PROCEDURE

Select the appropriate Speed Factor.

The Speed Factor is the factor that must be applied to the raw rpm data received by the unit (e.g. from the inductive pick-up) in order to arrive at a true engine speed reading. For further information concerning Speed Factor selection refer to the Diagnostic Platform Operator’s Manual (6.2.3: ‘Speed Factor Selection’).

The Speed Factor currently applied is highlighted in green in the Speed Factor section of the Vehicle Setup Screen. To change the applied factor:

- Click with the mouse on the desired new Speed Factor or
- Select the new Speed Factor using the keyboard or remote control left and right cursor keys and press the “Enter” key to confirm the new factor.

A thin yellow frame will move along the series of Speed Factor values as the cursor keys are pressed. When the “Enter” key is pressed the green highlight will move to the newly selected value.

- Make any required amendments to the applied limit values

It is possible to:

- Edit the currently displayed limit values.
- Save the currently displayed values to file for future use.
- Load the SUN default limit values.
- Load a previously saved set of limit values.

Refer to 9.3: ‘Editing Limit Sets’ for further information.

- To initiate the test procedure, press “OK”.

Figure 9-2 The EEC Test Procedure Vehicle Setup Screen (Non-catalyst Test)
• To abort the test procedure and return to the Gas Analyser Menu, press “Cancel”.

9.3 Editing Limit Sets

The table below shows the parameters to which limits may be applied within the EEC Test Procedure.

Table 9-1 EEC Test Procedure Limits

<table>
<thead>
<tr>
<th>Catalyst Test 1 (fast idle)</th>
<th>Catalyst Test 2 (Natural idle)</th>
<th>Non-catalyst test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO (% vol.)</td>
<td>CO (% vol.)</td>
<td>CO (% vol.)</td>
</tr>
<tr>
<td>HC (ppm vol)</td>
<td>RPM</td>
<td>HC (ppm vol.)</td>
</tr>
<tr>
<td>Lambda</td>
<td></td>
<td>RPM</td>
</tr>
<tr>
<td>RPM</td>
<td></td>
<td>Oil temperature</td>
</tr>
<tr>
<td>Oil temperature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 9-3 The Edit Limit Set Window](image)

To alter any or all of the limit values currently shown in the SUN EEC Test Vehicle Set-up Screen:

- Press the “Edit Limit Set” button corresponding to the Limit Set to be edited.

 The Edit Limit Set Window for Limit Set 1 or Limit Set 2 will be displayed.
Note:
The "Edit Limit Set 2" button is only present if “Catalyst” is selected in the Vehicle Category drop-down menu.

- Use the keyboard to make the required alterations.

To alter a limit value:

- Select the value to be altered using the “Tab” key.
 - The selected field will be highlighted in Blue.
- Use the “Backspace” key to delete the current value.
- Enter the required new value.
- Repeat the procedure for all values that are to be altered.
- To accept the new values, click “OK” or press the “Enter” key.

The new values will be applied and the window will be closed. Accepted limit values will be applied to the current test, and to all subsequent tests using the same test procedure, until superceded. The application of a different set of limit values will delete the values currently applied. Sets of limit values that may be required for future tests should, therefore, be saved to file as outlined below.

- If required, repeat the procedure to edit the other limit set.
- Press “OK” to apply the revised limits and return to the Vehicle Setup Screen.
 The window will be closed and the revised limit values will be applied.
- To cancel the alterations and return to the Vehicle Setup Screen, click “Cancel” or press the “Esc” key.
 The window will be closed and the current limit values will continue to be applied.

9.4 Saving and Loading Vehicle Set-ups

The vehicle setup currently displayed in the Vehicle Setup Screen can be saved in the PC memory for future use.

The information stored will be:

- Fuel type
- Vehicle category
- Speed factor
- Limit values.

To save the current vehicle setup:

- Press the “Save Setup” button.
The Save Limits File dialog box will be displayed.

![Image: The Save Limits Dialog Box]

Figure 9-4 The Save Limits Dialog Box

- Check the location to which the file is to be saved (C:/Program Files/Sun Equipment/Gas Module).
- Enter a name for the file in the File name box.
- To save the setup click “Save” or press the “Enter” key. The file containing the vehicle setup will be saved and can be recalled for future use using the “Load Setup” button.
- To cancel, click the “Cancel” button or press the “Esc” key. The Save Limits File box will be closed without storing the setup.

To load a previously saved setup:

- Press the “Load Setup” button.
 The Load Limits File dialog box will be displayed.

![Image: The Load Limits File Dialog Box]

Figure 9-5 The Load Limits File Dialog Box

- Select the file to be loaded with the mouse or enter the file name in the file name box.
- Click “Open” in the dialog box or press the “Enter” key. The loaded set-up will be applied.
- To load the SUN default set-up, press the “Load Default” button.
The software will warn that loading the default set-up will cause the current limit values to be overwritten and ask for confirmation before continuing. Click “Yes” to proceed with loading the defaults or “No” to continue using the current settings.

9.5 Test Procedure Summary

The SUN EEC Test comprises three test procedures, each corresponding to one of the Vehicle Categories that may be selected using the Vehicle Category drop-down menu:

- The “Catalyst” procedure for vehicles fitted with a regulated catalytic converter.
- The “< 10-86” procedure for vehicles without a catalytic converter constructed prior to 1 October 1986.
- The “>= 10-86” procedure for vehicles without a catalytic converter constructed on or after 1 October 1986.

The non-catalyst procedures vary from each other only in respect of the maximum permitted default value for CO and will, therefore, be treated as being identical for the purposes of this description.

The Catalyst procedure differs from the non-catalyst procedures in that:

- Measurements are taken at both fast and normal idle engine speeds whereas, in the non-catalyst procedures, measurements are only taken at normal idle.
- HC limits may be applied, and HC values will be displayed, at fast idle in the Catalyst procedure and at natural idle in the non-catalyst procedure. HC limits cannot be applied, and values will not be displayed, at natural idle in the catalyst procedure.
- Limits for lambda can only be applied, and lambda values will only be displayed, when measuring at fast idle in the Catalyst procedure. Lambda limits cannot be applied, and values will not be displayed, in the Non-catalyst procedure.

Note:

Only those measurement parameters to which limits may be applied in each specific procedure will be displayed, however, the unit will continuously determine and save the values for all measurable parameters (including NO if the optional NO kit is installed). These measured values will be displayed in the Final Results Screen and will be included in the results printout but will not be taken into account in determining whether or not the vehicle has passed or failed the test procedure.
For convenience, the SUN EEC Test may be divided into a number of phases which may appear in either both Catalyst and Non-catalyst procedures or in the Catalyst procedure alone. The following list shows these phases together with the procedures in which they appear:

1. Initialization phase (all procedures)
2. Fast idle preconditioning phase (Catalyst procedure only)
3. Fast idle measurement phase (Catalyst procedure only)
4. Normal idle preconditioning phase (all procedures)
5. Normal idle measurement phase (all procedures)
6. Results phase (all procedures)

The following sections will describe the test procedures with reference to these phases. Where necessary, attention will be drawn to any differences between their application in the Catalyst and Non-catalyst procedures.

The following descriptions assume:
- That all necessary connections to the test vehicle have been made.
- That all necessary alterations to the vehicle set-up have been made in the Vehicle Set-up Screen.
- That the zero-calibration and HC Residue checks have been completed.
- That the operator has pressed the “OK” button in the Vehicle Set-up Screen to initiate the selected test procedure.

9.6 Initialization Phase

The Initialization Phase is identical for all SUN EEC Test procedures.

Note:
The limit values for rpm and oil temperature that will be displayed during the Initialization Phase will vary according to the test procedure that has been selected in the Vehicle Set-up Screen. If a Catalyst Test is to be performed the limit set 1 (Fast Idle) values will be shown. If a Non-catalyst Test has been selected the appropriate Normal Idle limit values will be applied.
The Initialization Screen will automatically open when the Zero-calibration and HC residue checks have been completed and the SUN EEC Test Vehicle Set-up Screen “OK” button has been pressed.

Insert the sample probe fully into the vehicle tail pipe. During the Initialization Phase the values of all parameters will be continuously determined but only the values for rpm and oil temperature will be displayed.

The Initialization Screen will remain active until a concentration of 0.5% vol. CO₂ has been recorded or until the “Continue” button has been pressed.

If the Catalyst Test procedure is selected the Initialization Phase will be followed by the Fast Idle Preconditioning Phase (see 9.7).

If a Non-catalyst procedure is selected the Initialization Phase will be followed by the Normal Idle Preconditioning Phase (see 9.9).

9.7 Fast Idle Preconditioning Phase

The Fast Idle Preconditioning Phase is only encountered when performing the Catalyst Test.

The Catalyst Test limit set 1 values will be applied during the Fast Idle Pre-conditioning Phase.

During this phase the oil temperature and engine rpm should be brought within the limits specified for fast idle measurement (Catalyst Test, limit set 1).
The Fast Idle Preconditioning Phase consists of three screens that will be shown in sequence.

The Oil Temperature Check Screen will open automatically when a concentration of 0.5% vol CO₂ is reached during the Initialization Phase or when the "Continue" button is pressed from the Initialization Screen. The Screen will display the message “OIL TEMPERATURE IS BEING CHECKED”.

All parameters will be continuously determined. The measured values for oil temperature and rpm will be displayed.

The screen will continue to be displayed until:
- The oil temperature reaches the minimum prescribed limit, or
- The “Continue” button is pressed.

Figure 9-7 Fast Idle Oil Temperature Check

- The Oil Temperature Check Screen will open automatically when a concentration of 0.5% vol CO₂ is reached during the Initialization Phase or when the "Continue" button is pressed from the Initialization Screen.

 The Screen will display the message “OIL TEMPERATURE IS BEING CHECKED”.

 All parameters will be continuously determined. The measured values for oil temperature and rpm will be displayed.

 The screen will continue to be displayed until:

 - The oil temperature reaches the minimum prescribed limit, or
 - The “Continue” button is pressed.
• The RPM Screen will open automatically when the oil temperature falls within the limit range or when the “Continue” button is pressed from the Oil Temperature Check Screen.

![RPM Screen](image)

Figure 9-8 Fast Idle Preconditioning RPM Check

The screen will show the instruction “BRING RPM WITHIN LIMITS”. All parameters will be determined continuously and the measured values for CO, HC, rpm and oil temperature will be displayed together with the calculated value for lambda.

• Depress the accelerator until the engine rpm indicator is within the Green section of the rpm scale.

The RPM Screen (Figure 9-8) will be displayed until:

- The engine speed falls within the limit range, or
- The “Continue” button is pressed.
The Fast Idle Preconditioning Countdown Screen will be opened automatically when the engine rpm falls within the limit range or when the “Continue” button is pressed from the RPM Screen.

The screen will show the instruction "MAINTAIN SPEED – 60 SECONDS" together with a 60 second countdown.

Parameters will be determined and displayed as in The RPM Screen.

- Hold the accelerator depressed and maintain the engine rpm within the fast idle range.

If, during the 60 second countdown, the engine rpm moves out of range, the instruction on the screen will change to “BRING RPM BACK WITHIN LIMITS”. When the rpm are once more within limits the procedure will return to the Countdown Screen. The countdown will continue during the time that the rpm measurement is outside the specified range.

After the first 30 seconds of the countdown, if the displayed values to which limits are applied fall within the limit range for 2 seconds, the values will be stored and the procedure will proceed automatically to the Fast Idle Measurement Phase (see section 9.8).

If the values are not within limits after the whole 60 second countdown has elapsed, the last measured values will be stored and the procedure will move to the Fast Idle Measurement Phase.

- The operator may proceed to the Fast Idle Measurement Phase at any time, irrespective of the measured values, by pressing the “Continue” button.

Figure 9-9 Fast Idle Preconditioning Countdown

The screen will show the instruction "MAINTAIN SPEED – 60 SECONDS" together with a 60 second countdown.

Parameters will be determined and displayed as in The RPM Screen.

- Hold the accelerator depressed and maintain the engine rpm within the fast idle range.

If, during the 60 second countdown, the engine rpm moves out of range, the instruction on the screen will change to “BRING RPM BACK WITHIN LIMITS”. When the rpm are once more within limits the procedure will return to the Countdown Screen. The countdown will continue during the time that the rpm measurement is outside the specified range.

After the first 30 seconds of the countdown, if the displayed values to which limits are applied fall within the limit range for 2 seconds, the values will be stored and the procedure will proceed automatically to the Fast Idle Measurement Phase (see section 9.8).

If the values are not within limits after the whole 60 second countdown has elapsed, the last measured values will be stored and the procedure will move to the Fast Idle Measurement Phase.

- The operator may proceed to the Fast Idle Measurement Phase at any time, irrespective of the measured values, by pressing the “Continue” button.
9.8 Fast Idle Measurement Phase

The Fast Idle Measurement Phase is only encountered when performing a Catalyst Test.

The Catalyst Test limit set 1 values are applied during the Fast Idle Measurement Phase.

During the Fast Idle Measurement Phase all parameters will be determined continuously and the measured values for CO, HC, rpm and oil temperature will be displayed together with the calculated value for lambda.

- The Fast Idle Measurement Phase may be entered:
 - Automatically if the displayed values are within limits for 2 seconds at any time after 30 seconds of the preconditioning phase countdown have elapsed.
 - Automatically at the end of the preconditioning phase countdown (60 seconds).
 - Manually, by pressing the “Continue” button from the previous screen.

On entering the phase the procedure will check the current status of the engine rpm measurement.

- If the rpm value is outside the specified range, The Fast Idle Measurement RPM Check Screen will be shown.

![Figure 9-10 Fast Idle Measurement RPM Check](image)

The screen will show the instruction “BRING RPM WITHIN LIMITS”.

This screen will continue to be displayed so long as the engine speed falls outside the applied limits. When the rpm measurement returns to within the specified range Fast Idle Measurement Countdown Screen will be displayed.

- The operator may proceed from the rpm check screen to the countdown screen at any time, irrespective of the measured rpm values, by pressing the “Continue” button.
- If the rpm value is within the specified range when entering the Fast Idle Measurement Phase, The countdown screen will be shown immediately.

![Fast Idle Measurement Countdown Screen](image)

Figure 9-11 Fast Idle Measurement Countdown

The screen will show the message “MAINTAIN SPEED – 120 SECONDS”.

A 120 second countdown will be displayed. If, at any time after the first 15 seconds of the countdown, the displayed values to which limits are applied fall within the specified range for a period of 2 seconds, the procedure will continue automatically with the Normal Idle Preconditioning Phase.

If the values do not fall within the specified range, the full 120 second countdown will elapse. At the end of the countdown period, the last measured values will be saved and the procedure will continue with the Normal Idle Preconditioning Phase.

- If the “Continue” button is pressed from the countdown screen, all measurements will be saved and the procedure will advance to the Normal Idle Preconditioning Phase.
• If the measured rpm value moves outside the specified range during the countdown period, the Fast Idle Measurement RPM Warning Screen will be displayed showing the message “BRING RPM BACK WITHIN LIMITS”.

![Fast Idle Measurement RPM Warning](image)

Figure 9-12 Fast Idle Measurement RPM Warning

When the rpm value has been brought within the specified range, the countdown screen will be displayed once more. The 120 second countdown will continue during the time that the rpm measurement is outside the specified limits.

• The operator may return to the countdown screen from the rpm warning screen at any time, irrespective of the measured rpm value, by pressing the “Continue” button.

9.9 Normal Idle Preconditioning Phase

The Normal Idle Preconditioning Phase occurs in all SUN EEC test procedures.

The Normal Idle limit values will be applied during the Normal Idle Preconditioning Phase. The values applied will depend on the test selected (Catalyst, Non-catalyst pre 10 – 86, or Non-catalyst post 10 – 86).

During this phase, all parameters will be continuously determined. The measured values for CO, rpm and oil temperature will be displayed.

The Normal Idle Preconditioning Phase will be entered either immediately after the Initialization Phase has been completed (Non-catalyst Test) or after the completion of the Fast Idle Measurement Phase (Catalyst Test).
On entering the Normal Idle Pre-conditioning Phase, the Normal Idle Pre-conditioning RPM Check Screen will be displayed.

The screen will show the message “BRING RPM WITHIN LIMITS”.

- Adjust the engine speed until the rpm indicator falls within the Green sector of the rpm scale.

The rpm check screen will continue to be displayed until:

- The rpm measurement is within the specified range, or
- The “Continue” button is pressed.

The Normal Idle Preconditioning Countdown Screen will automatically be shown when the rpm measurement is within the limit range or the “Continue” button is pressed in the rpm check screen.
The screen will show the instruction "MAINTAIN SPEED – 20 SECONDS" together with a 20 second countdown.

- Hold the accelerator depressed and maintain the engine rpm within the normal idle range.

If, during the 20 second countdown, the engine rpm moves out of range, the instruction on the screen will change to "BRING RPM BACK WITHIN LIMITS“. When the rpm is once more within limits the procedure will return to the countdown screen. The countdown will continue during the time that the rpm measurement is out of limits.

- The operator may proceed to the Normal Idle Measurement Phase at any time, irrespective of the measured rpm value, by pressing the “Continue” button.

The procedure will continue to the Normal Idle Measurement Phase:
- Automatically after the 20 second countdown is completed, or
- When the “Continue” button is pressed.

9.10 Normal Idle Measurement Phase

The Normal Idle Measurement Phase occurs in all SUN EEC test procedures.

The Normal Idle limit values will be applied during the Normal Idle Measurement Phase. The values applied will depend on the test selected (Catalyst, Non-catalyst pre 10 – 86, or Non-catalyst post 10 – 86).

During this phase, all parameters will be continuously determined. The measured values for CO, rpm and oil temperature will be displayed.

- The Normal Idle Measurement Phase may be entered:
 - Automatically at the end of the preconditioning phase countdown (20 seconds).
 - Manually, by pressing the “Continue” button from the Normal Idle Preconditioning Countdown Screen.

On entering the phase the procedure will check the current status of the engine rpm measurement.
If the rpm value is outside the specified range, the Normal Idle Measurement RPM Check Screen will be shown.

The screen will show the instruction “BRING RPM WITHIN LIMITS”.

- Adjust the engine speed until the rpm indicator falls within the Green sector of the rpm scale.

The rpm check screen will continue to be displayed until:

- The rpm measurement is within the specified range, or
- The "Continue" button is pressed.

The operator may proceed from the rpm check screen to the normal idle measurement countdown screen at any time, irrespective of the measured rpm values, by pressing the "Continue" button.
If the rpm value is within the specified range when entering the Normal Idle Measurement Phase, the countdown screen be shown immediately.

The screen will show the message “MAINTAIN SPEED – 15 SECONDS”.

A 15 second countdown will be displayed. At the end of the countdown period, the last measured values will be saved and the procedure will continue automatically to the Results Phase.

If the “Continue” button is pressed from the countdown screen, all measurements will be saved and the procedure will advance to the Results Phase.
If the measured rpm value moves outside the specified range during the countdown period, the Normal Idle Measurement RPM Warning Screen will be displayed showing the message “BRING RPM BACK WITHIN LIMITS”.

When the rpm value has been brought within the specified range, the countdown screen will be displayed once more. The countdown will continue during the period that the rpm measurement is out of limits.

The operator may return to the countdown screen from the rpm warning screen at any time, irrespective of the measured rpm value, by pressing the “Continue” button.

The procedure will continue to the Results Phase:

- Automatically after the 15 second countdown is completed, or
- When the “Continue” button is pressed.
9.11 Results Phase

The Results Phase is found in all Sun EEC test procedures.

- The Results Phase may be entered:
 - Automatically at the end of the Normal Idle Measurement Phase countdown (15 seconds).
 - Manually, by pressing the “Continue” button from the Normal Idle Countdown Screen.
 - As illustrated by the figures below the results screen that will be displayed will depend on the test conducted: If a Catalyst Test has been performed the Results Screen will appear as illustrated by Figure 9-18.

![Figure 9-18 The EEC Catalyst Test Results Screen](image)
If a Non-catalyst Test has been performed the Results Screen will appear as illustrated by Figure 9-19

![Figure 9-19](image)

Figure 9-19 The EEC Non-catalyst Test Results Screen

The results screens will show:

- The measured or calculated values for the various test parameters.
- The applied limit values (where applicable).
- The overall test result (pass/fail).
- The test result for each limit set (pass/fail).

Measurement parameters for which no results were obtained and available limit values for which no limits were specified will be represented by a series of dashes.

Individual parameter results that are within the specified limit range will be indicated by a Green background.

Individual parameter results that are outside the specified limits will be indicated by a Red background.

Parameters to which no limits were applied will have a neutral (Grey) background.

- Press the “Print” toolbar button to make a printout of the test results.

Refer to 5.6: ‘Print’ for details of the DGA 2500 print procedure.

- Press the “Vehicle Set-up” toolbar button to return to the SUN EEC Test Vehicle Set-up Screen (see section 9.2).

The limit values applied for the current test will appear in the Vehicle Set-up Screen until superceded.
• Press the “Gas Analyser” toolbar button to return to the Gas Analyser Menu (see 5.1).
10 Maintenance

The “Maintenance” section of this manual is divided into three main subsections:

- Operator initiated system checks.
- Routine maintenance procedures.
- Error codes and warnings.

10.1 System Checks

The operator may initiate the following system checks:

- Leak Check (Vacuum).
- Leak Check (Gas).
- Gas Calibration Check
- Check and/or Install the O2 Cell.

All the above checks are initiated via the Gas Analyser Maintenance Menu (see 5.3).

10.2 Leak Check (Vacuum)

Note:

A daily check of the gas analyser pneumatic circuit for air leaks that could compromise the accuracy of the test results is a mandatory requirement of many country specific test procedures (see 6.3: ‘Daily Leak Check’). If the DGA 2500 is configured for an approval type that requires such a daily leak check, the appropriate settings will be made at the time of the installation of the test software. In this case the unit will not commence normal operation unless a satisfactory leak check has been carried out. In order to ensure the continued accuracy of the test results, it is recommended that a daily leak check be carried out at the start of the day’s operation even in cases where such a test is not a statutory requirement. To conduct a Leak Check (Vacuum):

- Select the “Leak Check (Vacuum)” option from the Gas Analyser Maintenance Menu (see 5.3)
The Leak Check (Vacuum) screen will be displayed instructing the operator to block the sample probe inlet.

Figure 10-1 Leak Check (Vacuum) Initialization

- Block the probe inlet using the Probe Sealing Tool (p/n 7009E9317-46) supplied with the unit.

The screen will indicate that the unit has entered a stabilisation period during which the pump will build up a vacuum in the gas analyser pneumatic circuit. The current vacuum will be displayed in mBar and a status bar will indicate a 20 second countdown.
At the end of the stabilisation period, the pump will cut out and the unit will measure the vacuum decay over a further 20 second period. During this measurement period the current vacuum and the vacuum decay will be displayed. A status bar will show a 20 second countdown.

![Image of Leak Check (Vacuum) Measurement](image1)

Figure 10-2 Leak Check (Vacuum) Measurement

After the elapse of the decay measurement period the screen will indicate either a successful or unsuccessful test result.

![Image of Leak Check (Vacuum) Result](image2)

Figure 10-3 Leak Check (Vacuum) Result

- If the leak check is successful, unblock the probe tip, store the Probe Sealing Tool in a safe place until it is required again and press “Continue” to return to the Gas Analyser Maintenance Menu.
• If the leak check is unsuccessful, check all filter and hose connections for tightness and ensure that the sample hose is not damaged. Repeat the Leak Check (Vacuum). Refer to 10.6.3: ‘Sample Probe and Hose’ for information on how to isolate possible leaks in the sampling system (Probe, Hose and Gas Filter).

• If a satisfactory result is still not obtained, and the sample hose and connections are in order, conduct a Leak Check (Gas) (see below, 10.3: ‘Leak Check (Gas)’) to eliminate the possibility that a leak in the gas module water circuit is influencing the result of the Leak Check (Vacuum).

10.3 Leak Check (Gas)

The Leak Check (Gas) tests for gas/air leaks in the pneumatic system of the gas analyser but is not influenced by leaks occurring in the gas module water circuit. Since leaks in the water circuit do not compromise measurement accuracy, a successful Leak Check (Gas) is considered to fulfill the requirement for a daily leak check even if a previous Leak Check (Vacuum) has been unsuccessful (see 6.3: ‘Daily Leak Check’).

Note:

It will be apparent that a successful Leak Check (Gas) following an unsuccessful Leak Check (Vacuum) indicates an internal leak in the gas module water circuit. Although measurements will not be blocked and normal unit operation may continue, contact your SUN dealer or Service Representative to arrange for water circuit service.

To conduct a Leak Check (Gas):

• Select the “Leak Check (Gas)” from the Gas Analyser Maintenance Menu (see 5.3).
The Leak Check (Gas) screen will be displayed instructing the operator to inset the sample probe in the vehicle tail pipe and showing the current measured level of CO₂.

Start the vehicle engine (if not already running) and insert the sample probe fully into the exhaust tailpipe.

The unit will collect an exhaust gas sample from the vehicle and the CO₂ concentration will be continuously measured and displayed. When the proper CO₂ threshold has been reached (+/- 5% vol) the screen will indicate that a 20 second stabilisation period has begun. A status bar representing a 20 second countdown will be shown (figure 10-5).
At the end of the stabilisation period the pump will switch off and the screen will ask the operator to remove the probe from the tailpipe and block the probe tip using the Probe Sealing Tool (p/n 7009E9317-46).

Figure 10-5 Leak Check (Gas) - Block Probe Tip

- Remove the sample probe from the vehicle exhaust, block the probe tip and press the “Continue” button to proceed.

After the “Continue” button is pressed, the pump will re-start and the unit will enter the measurement phase in which the decay in the concentration of CO₂ will be determined. The vacuum, CO₂ level and CO₂ decay will be continuously measured and the values for CO₂ and CO₂ decay will be displayed. The status bar will show a 20 second countdown during the decay measurement phase.

Figure 10-6 Leak Check (Gas) - Measurement
At the end of the measurement phase the screen will indicate whether the leak check was successful or unsuccessful.

- If the leak check has been successfully performed, unblock the probe tip, store the Probe Sealing Tool in a safe place until it is required again and press "Continue" to return to the Gas Analyser Maintenance Menu. If the leak check was unsuccessful, check the sampling system for loose connections and/or damage and repeat the test.

If the sampling system is in good order and the leak check is still not satisfactory, an internal leak in the gas module is indicated. Contact your SUN® dealer or Service Representative.

10.4 Gas Calibration Check

The Gas Calibration check tests the calibration of the gas measurement system against a calibration gas of a known composition. This check should be carried out by the operator as and when necessary using a 1% accuracy gas mixture of:

- 1.3 – 1.7% vol CO
- 10.5 – 11.55 %vol CO₂
- 540 – 660 ppm vol HC.

Note:
The Gas Calibration Check should not be confused with the full gas calibration that should only be carried out by a SUN Service Engineer. The DGA 2500 system may be set to specify that a full gas calibration be performed at specified intervals (normally once every 12 months). If such a setting has been entered into the system, the unit will give a warning that a full gas calibration is required.

- Select the “Gas Calibration Check” option from the Gas Analyser Maintenance Menu.

The Gas Calibration screen will be displayed holding two drop-down menus (“Lambda calculated for” and “HC represents”) and measurement fields for CO, CO₂, HC, NO, O₂ and lambda.

- Select a fuel type from the “Lambda calculated for” drop-down menu. The alternatives (Petrol, LPG, and CNG) represent the three possible fuel types available.
• Select a gas mixture from the "HC represents" drop-down menu.

![GAS CALIBRATION CHECK](image)

Figure 10-7 Gas Calibration Check

The available options are:

- C₃H₈ (Propane)
- C₆H₁₄ (Hexane)
- CH₄ (Methane)
- LPG (Liquified Petroleum Gas).

The default setting is HC represents C₆H₁₄ (Hexane).

• Connect the calibration gas bottle to the calibration gas inlet on the gas module rear panel, set the flow to 5 liters/min and turn on the gas.

• Allow the readings to stabilise and compare the readings obtained by the analyser with the known composition of the calibration gas. The indicated ppm vol reading for HC must be the same as the known concentration of HC in the gas bottle.

• When the check is completed, turn off the gas and disconnect the gas cylinder from the calibration gas inlet.

• Press “Back” to return to the Gas Analyser Maintenance Menu.

10.5 Check and/or Install the O₂ Cell

The O₂ cell generates an electrical voltage proportional to the O₂ present in the exhaust sample. The analyser interprets this voltage and displays the O₂ content as a percentage. After a zero calibration the O₂ concentration should read approximately 20.93 %vol.
Due to the chemical processes within the O2 cell it has a limited life. The current status of the cell may be derived from its output voltage which is monitored by the unit software. If the output voltage falls below 7.5 mV the unit will display a warning that the cell will soon require replacement (“Pre-warning – change O2 cell”). The unit will display an error message that cell must be changed if the output voltage drops to 7 mV (“Change O2 cell”). The condition of the cell may be checked at any time by using the O2 Check/Install facility built into the software.

To check the status of the cell:

- Select the “O2 Check/Install” option from the Gas Analyser Maintenance Menu.

 The “O2 Check/Install” screen will be displayed showing the message “CHECKING O2 CELL – PLEASE WAIT”.

 ![O2 Sensor Status Check](image)

 Figure 10-8 O2 Sensor Status Check

 - The unit will proceed to determine and display the cell output voltage and will show the cell status as follows:
 - Output voltage 7.5 mV or more – “Acceptable O2 cell”.
 - Output voltage between 7.0 mV and 7.5 mV – “Pre-warning change O2 cell”.
 - Output voltage less than 7.0 mV – “Change O2 cell”.
 - Output voltage –2.5 mV – “No O2 cell connected”.

• Press “Exit” to return to the Gas Analyser Maintenance Menu or “Continue” to proceed with the installation of a new cell.

![O2 Sensor Status Check - Result](image)

Figure 10-9 O2 Sensor Status Check - Result

Note:

> Once “Continue” is pressed the installation procedure must be completed even if a new cell is not installed. If the old cell remains in situ the software will see the existing cell as a new cell and will require that the auto-calibration referred to below be performed.

The screen will show “Change O₂ cell” and ask the operator to press “Continue” in order to proceed with the installation of a new cell.

To install a new cell:

• Remove the O₂/NO cell cover plate on the rear panel of the gas module, remove the connector from the existing O₂ cell and turn the cell anti-clockwise to remove it.

• Install the new cell and replace the connector.

• Press “Continue”.

The unit will determine the output voltage of the new cell. If the new cell is acceptable the screen will prompt the operator to press “Continue” to initiate an auto-calibration.
CHECK AND/OR INSTALL THE O2 CELL

- Press “Continue” to initiate the auto-calibration.

![Auto-calibration Pop-up Window](image)

Figure 10-10 O2 Sensor Replacement - Auto-calibration

The unit will initiate the auto-calibration and the auto-calibration pop-up window will appear showing the auto-calibration countdown. At the end of the auto-calibration the screen will show the message “Installation complete” and prompt the operator to press “Exit” to leave the installation procedure.

- Press “Exit” to return to the Gas Analyser Maintenance screen.
- Replace the O2/NO sensor cover plate.
10.6 Routine Maintenance Procedures

Caution:

The maintenance and service procedures presented in this section are those that the operator may perform. All other service procedures should only be carried out by an authorised service representative.

The SUN Diagnostic Gas Analyser is a precision measurement instrument that requires little maintenance, nevertheless, the following maintenance and service procedures should be carried out in order to maintain the accuracy of the test results.

10.6.1 Periodic Checks

- A Leak Check (Vacuum) or a Leak Check (Gas) should be carried out daily, before the start of operation. Refer to 10.2: ‘Leak Check (Vacuum)’ and 10.3: ‘Leak Check (Gas)’ for further information.

- A Gas Calibration Check should be carried out as and when required or when indicated by the system. Refer to section 10.4: ‘Gas Calibration Check’ for further information.

10.6.2 Filters

Caution:

Failure to adequately maintain the filters will invalidate the DGA 2500 Warranty.

- CHARCOAL FILTER (p/n 7096E9061-54). The charcoal filter should be replaced when the annual gas calibration is carried out.

- WATER FILTER (Blue, p/n 7096E9061-0). The water filter should be replaced when it has become very dirty or clogged.

- GAS FILTER (White; p/n 7096E9061-03). The gas filter should be replaced when the “Low Flow” warning message is displayed, or when it has become very dirty or clogged.

- PRIMARY (PETROL) FILTER (p/n 7096E9062-98. The primary filter should be replaced when clogged.

More frequent filter service will be required when:

- The analyser is in constant use.

- Testing vehicles not warmed up to normal operating temperature.

- Testing vehicles with very high emissions.
10.6.3 Sample Probe and Hose

Periodically check the inlet holes at the probe tip for dirt and debris. To clean:

- Disconnect the sample hose from the analyser at the sample inlet.
- Clean the probe tip using a small pointed tool or piece of thin wire.
- Blow any remaining debris away using compressed air.

Caution:

Do not apply compressed air to the probe tip without first disconnecting the sample hose from the sample inlet.

Backpressure could damage the sampling system.

The sample hose should be free of any cuts or abrasions that may cause leaks. Follow the leak check procedures in this manual and replace any damaged hoses.

Use the following test/repair procedure if the analyser fails a Leak Check (Vacuum) or a Leak Check (Gas):

1. Ensure that assembly connections on the exhaust sample probe and filters are tight.
 a. If tight, continue with step 2.
 b. If loose tighten and repeat the leak check.
 c. If the analyser fails the leak check, proceed with step 2.

2. Remove the sample probe from the hose and plug the hose. Repeat the leak check.
 a. If the test fails, continue with step 3.
 b. If the test is successful, install a new sample probe and repeat the test to check for other leaks.
 c. If the test still fails, continue with step 3.

3. Remove the exhaust sample hose from the inlet fitting and plug the inlet fitting. Repeat the leak check.
 a. If the test fails, proceed with step 4.
 b. If the test is successful, install a new hose and repeat the leak test to check for other leaks.
 c. If the test still fails, continue with step 4.

4. Pinch off the tube connected to the gas filter with a small vise grip or needle nose style pliers. Repeat the leak check.
a. If the test fails, the problem is either the hose or there is an internal leak in the analyser. Contact your SUN Service Representative for repair service.

b. If the test is successful, a gas filter leak is indicated. Replace the gas filter and repeat the leak test.

c. If the test is successful, the leak is repaired.

d. If the test fails, contact your SUN Service Representative for repair service.

10.6.4 Test Leads

- Inspect all test leads weekly for any cuts, kinks or abrasions and replace any faulty pick-ups or leads.
- When routing leads across an engine, ensure that they do not come into contact with any moving engine components or hot surfaces such as exhaust manifolds etc.
- Trigger clamps should be kept free from oil, grease and other contaminants and should be cleaned to minimise false triggering and, therefore, false measurements.

10.6.5 O₂ Cell

- The unit will indicate when the O₂ cell requires replacing by showing the “Pre-warning change O₂ cell” and “Change O₂ cell” warning messages. Refer to 10.5: ‘Check and/or Install the O₂ Cell’ for further information.

10.6.6 NO Cell (Optional)

- Replace the NO cell every two years. The replacement must be done by an authorised SUN Service Representative.
10.6.7 General

- The exterior of the cabinet may be cleaned using a damp soft lint-free cloth. Use a mild detergent to remove grease.

Caution:

Do not use solvents (acetone, benzine etc.). These can damage plastic components and affect sampling accuracy if they contaminate the sampling system.

- Clean up any liquid spills immediately to protect the exterior of the unit and to prevent any spillage from entering the ventilation vents.
- Test leads and the main power cable may be cleaned by using a water-free hand-cleanser and wiping dry with a cloth.

10.7 Error, Warning and System Status Messages

The DGA 2500 system gives error, warning and system status messages in two ways:

- By means of automatic pop-up windows.
- By means of the “Error/Warning” button on the toolbar.

10.7.1 Automatic Pop-up Windows

Automatic pop-up windows will be displayed to indicate the following system statuses:

- Warm-up
- Zero-calibration.
- HC residue check.

Figure 10-11 Warm-up
Each of the above statuses is represented by its own automatically displayed pop-up window, showing the status concerned together with a countdown of the time remaining in that status.

The windows can either be closed manually to allow access to the screen buttons or will close automatically when the system moves into another status. In the event of a pop-up window being automatically closed, it will remain hidden when moving between menu or setup screens but will reappear if a different mode (e.g. leak check, system information display etc.) is selected.

Note:

The three statuses will be run in sequence upon power-up or when returning from standby mode.

a. The Zero-calibration and HC residue check will be run in sequence following the manual initiation of an auto-calibration.

b. An automatically triggered auto-calibration will not be followed by an HC residue check.

c. In the event of a maintenance function (e.g. leak check) being selected whilst a power-up or manually initiated auto-calibration is in progress, the auto-calibration pop-up window will be displayed and the auto-calibration will be completed. The subsequent HC residue check will be postponed or aborted until the maintenance mode is exited.
10.8 The Error/Warning Button

The “Error/warning” button will appear on the right hand side of the toolbar whenever an error or warning condition is detected. Examples of such conditions are messages concerning the status of the O$_2$ Sensor, insufficient gas flow, daily leak check requirement etc.

- Select the Error/Warning button in order to review the error/warning messages.

 The Error/Warning pop-up window will be displayed showing the error/warning code together with a brief description of the cause of the error/warning message.

The Error/Warning pop-up window may be closed at any time by selecting the “Close” button.

The Error/Warning button will disappear automatically when the conditions giving rise to the error/warning message(s) are rectified.

Error/Warning codes and messages may be of two types:

- Messages relating to the DGA 2500 system.
- Messages relating to the gas bench

The possible error codes are show by the tables below.

Table 10-1 Gas Bench Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>ADC HC out of tolerance</td>
</tr>
<tr>
<td>02</td>
<td>ADC CO out of tolerance</td>
</tr>
<tr>
<td>03</td>
<td>ADC CO2 out of tolerance</td>
</tr>
<tr>
<td>04</td>
<td>ADC NO out of tolerance</td>
</tr>
<tr>
<td>05</td>
<td>ADC O2 out of tolerance</td>
</tr>
<tr>
<td>06</td>
<td>analog input 1 out of tolerance</td>
</tr>
<tr>
<td>07</td>
<td>analog input 2 out of tolerance</td>
</tr>
<tr>
<td>08</td>
<td>pressure measurement out of tolerance</td>
</tr>
<tr>
<td>10</td>
<td>temperature CO/CO2 out of tolerance</td>
</tr>
<tr>
<td>11</td>
<td>temperature HC out of tolerance</td>
</tr>
<tr>
<td>13</td>
<td>source temperature 3K out of tolerance</td>
</tr>
<tr>
<td>15</td>
<td>supply voltage out of tolerance</td>
</tr>
<tr>
<td>17</td>
<td>supply voltage 3K source out of tolerance</td>
</tr>
<tr>
<td>19</td>
<td>HC zero cal error</td>
</tr>
</tbody>
</table>
Table 10-1 Gas Bench Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>CO zero cal error</td>
</tr>
<tr>
<td>21</td>
<td>CO2 zero cal error</td>
</tr>
<tr>
<td>22</td>
<td>NO zero cal error</td>
</tr>
<tr>
<td>23</td>
<td>HC gain cal error at 1 point</td>
</tr>
<tr>
<td>24</td>
<td>CO gain cal error at 1 point</td>
</tr>
<tr>
<td>25</td>
<td>CO2 gain cal error at 1 point</td>
</tr>
<tr>
<td>26</td>
<td>NO gain cal error at 1 point</td>
</tr>
<tr>
<td>29</td>
<td>ADC error</td>
</tr>
<tr>
<td>30</td>
<td>source 3K error</td>
</tr>
<tr>
<td>32</td>
<td>chopper motor error</td>
</tr>
<tr>
<td>33</td>
<td>analog input 1 error</td>
</tr>
<tr>
<td>34</td>
<td>analog input 2 error</td>
</tr>
<tr>
<td>35</td>
<td>pressure sensor error</td>
</tr>
<tr>
<td>38</td>
<td>EEprom error</td>
</tr>
<tr>
<td>39</td>
<td>HC signal change too small at temp. compensation</td>
</tr>
<tr>
<td>40</td>
<td>CO signal change too small at temp. compensation</td>
</tr>
<tr>
<td>41</td>
<td>CO2 signal change too small at temp. compensation</td>
</tr>
<tr>
<td>43</td>
<td>HC signal change too high at temp. compensation</td>
</tr>
<tr>
<td>44</td>
<td>CO signal change too high at temp. compensation</td>
</tr>
<tr>
<td>45</td>
<td>CO2 signal change too high at temp. compensation</td>
</tr>
<tr>
<td>47</td>
<td>HC simulated signal at 10 C out of tolerance</td>
</tr>
<tr>
<td>48</td>
<td>CO simulated signal at 10 C out of tolerance</td>
</tr>
<tr>
<td>49</td>
<td>CO2 simulated signal at 10 C out of tolerance</td>
</tr>
<tr>
<td>51</td>
<td>HC simulated signal at 50 C out of tolerance</td>
</tr>
<tr>
<td>52</td>
<td>CO simulated signal at 50 C out of tolerance</td>
</tr>
<tr>
<td>53</td>
<td>CO2 simulated signal at 50 C out of tolerance</td>
</tr>
<tr>
<td>55</td>
<td>no HC cal with low level gas at 2 point cal</td>
</tr>
<tr>
<td>56</td>
<td>no CO cal with low level gas at 2 point cal</td>
</tr>
<tr>
<td>57</td>
<td>no CO2 cal with low level gas at 2 point cal</td>
</tr>
<tr>
<td>59</td>
<td>no HC cal with high level gas at 2 point cal</td>
</tr>
<tr>
<td>60</td>
<td>no CO cal with high level gas at 2 point cal</td>
</tr>
<tr>
<td>61</td>
<td>no CO2 cal with high level gas at 2 point cal</td>
</tr>
<tr>
<td>67</td>
<td>HC iteration error at 2 point cal</td>
</tr>
</tbody>
</table>
Table 10-1 Gas Bench Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>CO iteration error at 2 point cal</td>
</tr>
<tr>
<td>69</td>
<td>CO2 iteration error at 2 point cal</td>
</tr>
<tr>
<td>71</td>
<td>HC gas tag conversion error at 2 point cal</td>
</tr>
<tr>
<td>72</td>
<td>CO gas tag conversion error at 2 point cal</td>
</tr>
<tr>
<td>73</td>
<td>CO2 gas tag conversion error at 2 point cal</td>
</tr>
<tr>
<td>75</td>
<td>mathematic error</td>
</tr>
<tr>
<td>80</td>
<td>NO sensor not connected</td>
</tr>
<tr>
<td>81</td>
<td>O2 sensor not connected</td>
</tr>
<tr>
<td>87</td>
<td>O2 zero error</td>
</tr>
</tbody>
</table>

Table 10-2 SUN System Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Change O2 Cell</td>
</tr>
<tr>
<td>01</td>
<td>Pre_Warning Change O2 Cell</td>
</tr>
<tr>
<td>02</td>
<td>Temperature limit exceeded</td>
</tr>
<tr>
<td>03</td>
<td>BGL</td>
</tr>
<tr>
<td>04</td>
<td>Water Detected</td>
</tr>
<tr>
<td>05</td>
<td>Sibench errors</td>
</tr>
<tr>
<td>06</td>
<td>Auto zero calibration pending</td>
</tr>
<tr>
<td>07</td>
<td>Condensation in Sibench Detected</td>
</tr>
<tr>
<td>08</td>
<td>Low Flow</td>
</tr>
<tr>
<td>09</td>
<td>Vacuum Error</td>
</tr>
<tr>
<td>10</td>
<td>Temperature Error</td>
</tr>
<tr>
<td>11</td>
<td>Co2 too high while HC-residue check active</td>
</tr>
<tr>
<td>12</td>
<td>Gasbench driver error</td>
</tr>
<tr>
<td>13</td>
<td>No NO-CELL</td>
</tr>
<tr>
<td>14</td>
<td>No O2-CELL</td>
</tr>
<tr>
<td>15</td>
<td>No Flow</td>
</tr>
<tr>
<td>16</td>
<td>No Acceptable new cell</td>
</tr>
<tr>
<td>17</td>
<td>Change NO-CELL</td>
</tr>
<tr>
<td>18</td>
<td>NO-CELL gas required</td>
</tr>
<tr>
<td>19</td>
<td>Gas calibration required</td>
</tr>
<tr>
<td>20</td>
<td>Pre Warning Gas calibration required</td>
</tr>
</tbody>
</table>
10.9 Maintenance Parts

The following maintenance parts are available for Operator Maintenance Procedures:

Table 10-3 Operator Maintenance Parts

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7096E9321-25</td>
<td>Exhaust Probe Assembly</td>
</tr>
<tr>
<td>7096E9061-40</td>
<td>Exhaust Sample Hose</td>
</tr>
<tr>
<td>7009E9317-46</td>
<td>Exhaust Probe Sealing Tool</td>
</tr>
<tr>
<td>7096E9061-02</td>
<td>Water Filter</td>
</tr>
<tr>
<td>7096E9061-03</td>
<td>Gas Filter</td>
</tr>
<tr>
<td>7096E9062-98</td>
<td>Primary Filter</td>
</tr>
<tr>
<td>7096E9061-54</td>
<td>Charcoal Filter</td>
</tr>
<tr>
<td>7096E4060-31</td>
<td>Oxygen Sensor</td>
</tr>
<tr>
<td>EAX0048E03A</td>
<td>Trigger Pick-up Assembly (Grey) 1.2 m</td>
</tr>
<tr>
<td>EAX0048E04A</td>
<td>Low Temperature Probe and Lead Assembly</td>
</tr>
</tbody>
</table>
Index

A
Application Version, see Gas Analyser System Information

B
Buttons
 Error/Warning Button 96

C
Connections 31
 Data 31
 Oil Temperature Probe 38
 Pneumatic 32
 Power 31
 RPM Pickup 38

D
Daily Leak Check, see Start-up
Data Buffers 51
DGA 2500 11
 Basic Configuration 11
 Gas Module Layout 15
 General Layout 15
 Options 13

E
EEC Test Procedure 22, 57–80
 Availability 22
 Fast Idle Measurement Phase 70
 Fast Idle Preconditioning Phase 66
 Introduction 57
 Normal Idle Measurement Phase 74
 Normal Idle Preconditioning Phase 72
 Phases 65
 Results Phase 78
 Summary 61
 Vehicle Categories 57
 EEC Test Procedure Vehicle Setup 58
 Editing Limit Sets 61
 Fuel Type Selection 58
 Loading Vehicle Setups 62
 Saving Vehicle Setups 62
 Speed Factor Selection 60
 Vehicle Category Selection 59
 Error Codes
 Gas Bench 97
 SUN System Error Codes 99
 Error Messages 95

F
Factors, see Gas Analyser System Information
File Versions, see Gas Analyser System Information
Filters, see Maintenance
Free Measurement
 Applying Limit Sets 51
 Free Measurement Screen 44
 Test Procedure 50
Free Measurement Procedure 22
Free Measurement Vehicle Setup 46
 Editing Limit Sets 49
 Fuel Type Selection 47
 Loading Saved Setup 48
 Saving Vehicle Setup 48
 Speed Factor Selection 47
Fuel Type
 Selection in EEC Test 58
 Selection In Free Measurement 47
Fuel Type Selection, see Setup

G
Gas Analyser Menu 22
Gas Analyser System Information 28
Gas Analyser System Menu 23
Gas Analyser System Settings 25
Gas Bench
 Error Codes 97
 Storage Conditions 9
Gas Calibration Check, see Maintenance
Gas Settings, see Gas Analyser System Information
Gas Tag Values, see Gas Analyser System Information

H
HC Residue Check
 Pop-up Window 96
 See Also Start-up

L
Lambda/AFR Selection, see Gas Analyser System Settings
Leak Check (Gas), see Maintenance
Leak Check (Vacuum), see Maintenance
Limit Sets 57
 Editing in EEC Procedure 61
 Editing in Free Measurement 49
LPG Composition, see Gas Analyser System Settings

M
Maintenance 12, 81–100
 Check/Install O2 Sensor 88
 Filters 92
 Gas Analyser Maintenance Menu 25
 Gas Calibration Check 87
 Leak Check (Gas) 84
 Leak Check (Vacuum) 81
 NO Sensor 94
 Periodic Checks 92
 Sample Hose & Probe 92
 Test Leads 94
Measurement Procedure 40
Measurements
 Accuracy 9
 Parameters 9
 Range/Resolution 9

N
Negative Indications 35
NO Sensor Replacement, see Maintenance

O
O2 Sensor 94
O2 sensor Check/Install, see Maintenance

P
Pop-up Window 95
Power 31
Print 29
 Sample Printout 30
 Vehicle Identification 29
Print Preview 54
Propane Equivalence Factor (P.E.F.) 10

S
Safety Precautions 7
Sample Hose & Probe, see Maintenance
Screen Elements 17
Service Dates, see Gas Analyser System Information
Setup
 Fuel Type Selection 37
 Gas Analyser System Menu 24
 Lambda/AFR Selection 37
Shut Down Procedure 41
Speed Factor Selection 37
 See also Free Measurement Vehicle Setup
 See also EEC Test Procedure Vehicle Setup
Standby Mode 23
Start-up
 Daily Leak Check Requirement 35
 DGA 2500 32
 Gas Analyser 32
 HC Residue Check 36
 Warm up 33
 Zero-Calibration 34
Startup 32
Summertime Setting, see Gas Analyser System Settings
SUN System Error Codes 99
System Status Messages 95

T
Test Leads, see Maintenance
Testing Tips 39
V
Vehicle Categories (EEC Test) 57

W
Warm-up 95
 See Also Start-up 33
Warning Messages 95

Z
Zero Calibration
 Pop-up Window 96
Zero-calibration, see Start-up 34